RUHR-UNIVERSITAT BOCHUM

RUHR-UNIVERSITAT BOCHUM

Security of PDF Signatures

Karsten Meyer zu Selhausen

Digitally signed by Karsten Meyer
zu Selhausen
Reason: Submission of the thesis
Location: Bochum, Germany
Date: 2018.11.25 18:48:00 +01'00'

Master's Thesis — November 25, 2018.
Chair for Network and Data Security.

Supervisor: Prof. Dr. Jorg Schwenk
Advisor: M. Sc. Martin Grothe
Advisor: Dr.-Ing. Christian Mainka
Advisor: Dr.-Ing. Vladislav Mladenov

hg 1 Lehrstuhl for
: Netz- und Datensicherheit

Abstract

The Portable Document Format (PDF) is probably the most common file format for
the exchange of digital documents of any type. Almost every company and govern-
mental institution uses PDF files for communication and digital contracts due its
universal compatibility. As these environments rely on the content of the documents
it is necessary to secure them. The application of a digital signature is suitable for
this task and allows to secure digital documents in terms of integrity, authenticity
and non-repudiation. In recent years digital signatures gained the same legal status
as handwritten signatures in many circumstances. There are even cases where digi-
tally signed documents are mandatory. PDF files support the application of digital
signatures natively. Due to the combination of PDF’s advantages and the security
of digital signatures, signed PDF files have become popular for the exchange of se-
cure digital documents. Despite the fact that the PDF version introducing native
digital signatures was published in 1999 there has been little to no research on the
security of digital signatures embedded in PDF files in the past. Given the crucial
environments signed PDF files are used in - including the judicial system, tax mat-
ters and all sorts of legally binding contracts - it is necessary to evaluate whether it
is possible to bypass the protection of signatures in PDF files. This thesis contains
the systematic and comprehensive evaluation of the security of PDF signatures. A
total of 34 applications for different operating systems has been evaluated using dif-
ferent attacks from three novel attack classes. The evaluation results are alarming
as vulnerabilities have been found in all but 4 applications. Details of the success-
ful attacks have been given to the applications’ vendors to enable them to fix the
identified vulnerabilities.

KEYWORDS: Portable Document Format, PDF, Adobe, Digital Signature, Signa-
ture Exclusion, Incremental Update Abuse, Signature Wrapping, Security Evalua-
tion

Official Declaration

Hereby I declare, that I have not submitted this thesis in this or similar form to any
other examination at the Ruhr-Universitdt Bochum or any other Institution of High
School.

I officially ensure, that this paper has been written solely on my own. I here-
with officially ensure, that I have not used any other sources but those stated by
me. Any and every parts of the text which constitute quotes in original word-
ing or in its essence have been explicitly referred by me by using official marking
and proper quotation. This is also valid for used drafts, pictures and similar for-
mats.

I also officially ensure, that the printed version as submitted by me fully confirms
with my digital version. I agree that the digital version will be used to subject the
paper to plagiarism examination.

Not this English translation, but only the official version in German is legally bind-
ing.

Eidesstattliche Erklarung

Ich erklare, dass ich keine Arbeit in gleicher oder dhnlicher Fassung bereits fiir eine
andere Priifung an der Ruhr-Universitdt Bochum oder einer anderen Hochschule
eingereicht habe.

Ich versichere, dass ich diese Arbeit selbststédndig verfasst und keine anderen als die
angegebenen Quellen benutzt habe. Die Stellen, die anderen Quellen dem Wortlaut
oder dem Sinn nach entnommen sind, habe ich unter Angabe der Quellen kenntlich
gemacht. Dies gilt sinngeméfl auch fiir verwendete Zeichnungen, Skizzen, bildliche
Darstellungen und dergleichen.

Ich versichere auch, dass die von mir eingereichte schriftliche Version mit der digita-
len Version {ibereinstimmt. Ich erkldre mich damit einverstanden, dass die digitale
Version dieser Arbeit zwecks Plagiatspriifung verwendet wird.

DATE AUTHOR

Erklarung

Ich erkldre mich damit einverstanden, dass meine Masterarbeit am Lehrstuhl NDS
dauerhaft in elektronischer und gedruckter Form aufbewahrt wird und dass die Er-
gebnisse aus dieser Arbeit unter Einhaltung guter wissenschaftlicher Praxis in der
Forschung weiter verwendet werden diirfen.

DATE AUTHOR

Acknowledgments

First, I would like to thank my advisors M. Sc. Martin Grothe, Dr.-Ing. Christian
Mainka, Dr.-Ing. Vladislav Mladenov and my supervisor Prof. Dr. Jérg Schwenk for
supporting me so much during my master’s thesis. I really appreciate the opportu-
nity they provided me to complete my master’s degree with an extremely interesting
and - prior to our efforts - unexplored topic. I would like to thank them for provid-
ing me with insight and feedback whenever I needed it. Their enormous expertise
helped me throughout the whole thesis and my results would not have been possible
without their support. Additionally, I want to thank them for letting me participate
in the process of creating a paper based on our results.

Furthermore, I would like to thank my superiors from Hackmanit for their under-
standing and flexibility allowing me to adjust my working hours so that I could
complete the work for my thesis.

Despite the freedom and fun I enjoyed during my studies at the university, I am
pleased that this chapter of my life is now complete. I look forward to the benefits
and challenges of the next chapter when I finally enter the professional world and
start a “real job” at a promising enterprise in 2019.

Contents

1

Introduction
1.1 Motivation
1.2 Related Worko
1.3 Contribution
1.4 Methodology
1.5 Organization of This Thesis
Foundations
2.1 The Portable Document Format
2.1.1 Overview
2.1.2 PDF File Structure
2.1.3 Incremental Updates
2.1.4 Objects e
2.1.5 Special and Important Objects
2.1.6 XRef Information
2.2 Digital Signatures in PDF 000
2.2.1 Overview
2.2.2 Signing Process L oo
2.2.3 Verification Process
2.3 Attacker Model
Attack Classes

3.1 Signature Exclusion oo
3.1.1 AttackIdea
3.1.2 Attack Details

3.2 Incremental Update Abuse
321 AttackIdea
3.2.2 Attack Details

3.3 Signature Wrapping o
3.3.1 AttackIdea
3.3.2 Attack Details

Tool Development

4.1 Overview e

4.2 First Approach: Java Tool Based on PDFBox
4.3 Second Approach: Tool Based on Python Scripts

=W W N e

—= © 00 =g ot gt

13
13
18
19
20

23
23
23
23
25
25
25
26
26
27

xii Contents
5 Evaluation 35
5.1 Overview e e 35
5.2 Testing Environment Lo 38
5.3 Results. 41
5.3.1 Signature Exclusion 0. 41
5.3.2 Incremental Update Abuse 44
5.3.3 Signature Wrapping 53
5.3.4 Re-evaluation after Application Updates 63
5.3.5 Summary 64
6 Conclusion and Future Work 67
6.1 Conclusion e 67
6.2 Future Work 68
A Appendix 73
A.1 Example PDF Document Containing a Visible Signature 73
A.2 Steps Needed to Establish a Trust Relationship between the Signer’s
Certificate and the Applications 77
A.3 Complete Lists of Manipulations and Manipulation Ideas Devised for
Different Attack Classes 81
A.3.1 Signature Exclusion 81
A.3.2 Signature Wrapping 87
A.4 First Attempt to Create a Hybrid Attack Based on Manipulations
from Two Attack Classes 92
A.5 Tables Containing Complete Results of the Evaluation 93
List of Figures 99
List of Tables 100
List of Listings 101

Bibliography 102

1 Introduction

In this chapter an introduction to the topic of this thesis is given. First, the motiva-
tion why it is important and worthwile to evaluate the security of digital signatures
in PDF documents is pointed out. Afterwards, related work from earlier research and
the contribution of this thesis is described. Finally, the methodology and structure
of this thesis is explained.

1.1 Motivation

The Portable Document Format (PDF) is an universal file format initially developed
by Adobe and later succeeded by the International Organization for Standardization
as an ISO standard [1]. Since 1993 when its first version was introduced it has become
one of the most-used file formats globally and the “de facto standard for electronic ex-
change of documents” of all kind [2, p. 23]. Today, PDF processing applications and
libraries are available for almost any platform including desktop computer, mobile
devices and servers. Due to its huge popularity and broad compatibility, PDF files
are frequently used both for internal and external communication by almost every
company as well as governmental institutions worldwide. The integrity, authentic-
ity and non-repudiation of the documents’ contents is a crucial factor especially in
these environments. In order to ensure that documents cannot be manipulated un-
noticed and that the document’s author is known digital signatures can be applied.
Authorities like the European Union empower digital signatures to have the same
legal value as handwritten signatures.! Depending on the environment and specific
use-case applying a signature to a digital document is even enforced by law for the
document to be valid. One example is the process of registering a company in the
german “Handelsregister”. While the process is initially based on paper documents
the notary certifying the certificate of incorporation has to send a digital copy to
the responsible court to finish the process.? This digital copy is only accepted as
a valid registration to the “Handelsregister” if it contains a valid digital signature

from the notary® based on his “qualified certificate”?

'VERORDNUNG (EU) Nr. 910/2014 DES EUROPAISCHEN PARLAMENTS UND DES RATES
(eIDAS), Artikel 25 Rechtswirkung elektronischer Signaturen.

?Handelsgesetzbuch (HGB), § 12 Anmeldungen zur Eintragung und Einreichungen.

3Beurkundungsgesetz (BeurkG), § 39a Einfache elektronische Zeugnisse.

‘Bundesnotarordnung (BNotO), § 33 Elektronische Signatur.

2 1 Introduction

PDF supports the application of digital signatures to documents since version 1.3
published in 1999 [7, p. 13]. As mentioned earlier, PDF is widely used for doc-
uments of any kind. Therefore, using PDF for the distribution of signed digital
documents is a logical choice. The European Telecommunications Standards In-
stitute (ETSI) definded the “PDF Advanced Electronic Signature” (PAdES) [10]
standard for law compliant digitally signed documents based on PDF, for exam-
ple.

However, despite the great importance of PDF and in contrast to other file formats
which support the digital signing of documents (e.g., XML [8]) the security of digital
signatures in PDF documents has not been in the focus of research in the past.
Research in the context of PDF was mostly focused on embedding different types of
malicious content in PDF documents and detecting this embedded malware. There
was only litte research focused on PDF signatures and no public evaluations which
survey the security of PDF signatures in common PDF processing applications are
available. The goal of the thesis is to fill this gap by providing a comprehensive
evaluation of the security of PDF signatures.

1.2 Related Work

The research in the area of PDF was mostly focused on abusing PDF features
maliciously for different attacks and detecting such embedded malware in PDF
files. For example, Raynal et at. published multiple attacks including Denial-of-
Service (DoS) and Server-Side-Request-Forgery (SSRF) based on PDF features in
2010 [20]. In 2012 another study abusing PDF feature for URL invocation attacks
was presented by Hamon et al. [11]. Multiple tools to detect malicious content in
PDF files were implemented in recent years to defend against the discovered at-
tacks [9, 12, 14, 13, 21, 23]. Additionally to abusing PDF features, the exchange of
a documents content by using a self-defined font was introduced by Markwood et
al. in 2017 [15].

Research in the specific field of PDF signatures is barely available. Besides the
proof-of-concept bypass for one specific signature presented by Popescu et al. in
2012 [19], there was only one attack published against the SHA-1 hash algorithm
used during the signing process by Stevens et al. in 2017 [25] and a bachelor thesis
written by Stefan containing a study of the signature verification process for digital
signatures in PDF files in 2018 [24]. None of these publications makes use of gen-
eral attack classes or contains a comprehensivce evaluation of the security of PDF
signatures.

Attacks against digital signatures contained in documents based on other data struc-
tures were published in the past. For example, XML Signature Wrapping attacks
were presented in 2005 by McIntosh and Austel [16]. In contrast to the wrapping
attacks presented in this thesis XML Signature Wrapping makes use of object ids

1.3 Contribution 3

instead of byte ranges to specify the signed data. Another example attack against
signatures embedded in a data structure which has been applied to SAML [22] and
JSON [17] is the deletion of a present signature. While the general idea is applicable
to PDF as well the victim specified in the attacker model used in this thesis ex-
pects the document to contain a signature. The “Signature Exclusion” attack class
extends the general idea of “deleting” a signature to make the victim’s application
state a valid signature is present although the verification could not be conducted
successfully.

1.3 Contribution

This thesis provides the results of the first comprehensive evaluation of the secu-
rity of digital signatures embedded in PDF documents. For all three attack classes
presented in Chapter 3 various variants were practically evaluated and several vul-
nerabilities identified. During the evaluation described in Chapter 5 it was possible
to execute successful attacks against 30 of 34 applications. These attacks allow
an attacker to bypass the integrity and authenticity protection of PDF signatures
completely and to change the displayed content of signed documents arbitrarily. A
Python script which allows the automatic application of all manipulations used for
the evaluation of the “Signature Exclusion” attack class to a signed PDF document
was implemented. Additionally to the evaluated attack vectors, further manipula-
tions and ideas for two attack classes were devised and are listed in Appendix A.3.1
and A.3.2 for future evaluations.

1.4 Methodology

The evaluation described in Chapter 5 was conducted as a black-box test. No source
code analysis of any of the evaluated applications was part of this evaluation. Due
to this the details how the applications actually process PDFs and validate present
signatures is unknown. Therefore, the evaluation was based on the “trial-and-error”
principle. Manipulations devised theoretically based on possible weak spots of PDF
signatures were practically applied to signed PDF files. The manipulated files were
opened in the different applications in the scope of this thesis. Afterwards, the
results were compared to the application’s behavior when the unaltered original
document was opened. For the two attack classes “Incremental Update Abuse” and
“Signature Wrapping” an adaptive process was used by adjusting the manipula-
tions depending on the behavior of the applications until a successful attack was
discovered or the application was considered to be not vulnerable to the attack
class.

4 1 Introduction

1.5 Organization of This Thesis

Chapter 2 provides the foundations needed to understand the later chapters in terms
of PDF basic and digital signatures in PDF. Additionally, it introduces the attacker
model used for the evaluation. In Chapter 3 the three attack classes evaluated in
this thesis are described. Chapter 4 contains an overview of the attempts to develop
a tool for the automatic execution of manipulations to given PDF documents. The
main part of this thesis is Chapter 5 which contains the description and detailed
results of the evaluation conducted during this thesis. The final Chapter 6 concludes
this thesis with a summary and ideas for possible future evaluations. The Appendix
consists of the original signed PDF document all manipulated documents were based
on, details how to establish trust relationships between the evaluated applications
and the signer’s certificate, lists with ideas for future evaluations and tables with
the complete results of the evaluation.

2 Foundations

In the following sections, foundations needed to understand the later chapters are
introduced. First, details of the Portable Document Format including the general
structure of PDF files and which parts are especially important for this thesis are
described. Afterwards, it is explained how digital signatures are appended to PDF
files and how signatures present in PDF files are verified by viewer applications.
Note that all this information is based on the “PDF Reference — Adobe Portable
Document Format, Version 1.7”7 [2] which defines PDF version 1.7. Applications
processing PDF files might not implement this standard correctly and behave dif-
ferently. Finally, the attacker model all attacks defined in Chapter 3 are based on
is described.

2.1 The Portable Document Format

2.1.1 Overview

A digital document written in the Portable Document Format (PDF) is supposed to
look identically independent from the application used to view or process it and the
operation system the application runs on. Therefore, PDF files need to comply to
a strict structure and contain specific information how the content of the document
should exactly be presented to the user. An example file is shown in Listing 2.1. The
structure of the PDF file is roughly divided into four parts: The “header” (line 1),
the “body” (lines 3 - 35), the “XRef section” (lines 36 - 43) and the “trailer” (lines
44 - 52). Detailed descriptions of these parts are given in Section 2.1.2. When an
application processes a PDF file it starts reading at the end of the file until it finds
the trailer. The trailer’s information is needed to access the XRef section which is
used to access objects spread through the whole file. These objects are stored in
the body of the file and contain the content of the document and the information
needed to display this content correctly. Objects can be of several different types
and either defined as “direct” or “indirect” (see Section 2.1.4). All objects of a
document are organized in a hierarchy tree whose root is the “document catalog”
(see Section 2.1.5). PDF files can be easily modified or extended by appending
updates to the end of the original file. These so-called “incremental updates” allow
to apply modifications to documents without altering the original file’s content. This
ensures signatures applied to the original document are still valid (see Section 2.1.3).

© 0 N O U W N

QU Ot G0l s R s R R R R R R W W W W W W W W W W NNNNNDNNNNN R e e
N o= O © 0 N0 R WN RO O X N0 O R WN RO O©OWNNO UERE WN=O©OW-NO Gk W= O

6 2 Foundations

In general, PDF files are encoded in ASCII. However, they can contain plain binary
data, as well. It is important for processing applications to recognize the mixture of
ASCII encoded and binary data.

%PDF-1.7
/P
1 0 obj

<<

/Type /Catalog

/Version /1.4

/Pages 2 0 R

>>

endobj

2 0 obj

<<

/Type /Pages

/Kids [3 0 R]

/Count 1

>>

endobj

3 0 obj

<<

/Type /Page

/MediaBox [0.0 0.0 612.0 792.0]
/Parent 2 O R
/Contents 4 O R
/Resources 5 0 R
>>

endobj

4 0 obj

<< /Length 33 >>
stream

BT

/F1 12 Tf

(Hello World) Tj
ET

endstream

endobj

xref

08

0000000000 65535
0000000015 00000
0000000078 00000
0000000135 00000
0000000247 00000

BB BB H

trailer

<<

/Root 1 O R

/ID [<0C7717COB5D2DOC3BFE67DAFE7A3F997> <0C7717COB5D2DOC3BFE67DAFE7A3F997>]
/Size 8

>>

startxref

491

%LEQF

Listing 2.1: Example PDF file (shortened).

2.1 The Portable Document Format 7

2.1.2 PDF File Structure

Initially, every PDF file consists only of the four parts depicted in Figure 2.2:

Header The first part of a PDF file is the “header”. The header consists of one single
line'. This line is a comment and states the version of the PDF standard which
the file is compliant to, e.g., %PDF-1.7 states that the file is compliant to PDF
version 1.7. Viewer applications need this information to be able to process
and display the PDF file correctly [2, pp. 92-93].

Body The “body” of a PDF file is the part which contains most of the file’s content.
The body consists of a sequence of “objects” (see Section 2.1.4) [2, p. 93].

XRef section The “cross-reference section” (short XRef section) contains informa-
tion needed to access “indirect objects” (see Section 2.1.4) without processing
the whole file. The XRef section contains one line for each “indirect object”.
Files can contain multiple XRef sections which are combined by the processing
application to the so-called “XRef table” [2, p. 93]. More details are provided
in Section 2.1.6.

Trailer The last part of a PDF file is the “trailer”. The trailer is used by viewer
applications to quickly access the XRef section and special objects (e.g., the
“document catalog”, see Section 2.1.5). These objects are needed to start
the processing or displaying of the file. Every trailer begins with the keyword
trailer and ends with the last line of the file containing the end-of-file marker
%%KEQF. It contains a dictionary with references to the mentioned special ob-
jects. For example, the /Root entry references the “document catalog”. The
dictionary is followed by the keyword startxref and the byte offset of the
beginning of the XRef section [2, pp. 97-98]. A complete trailer of an example
file is shown in Listing 2.3.

Header

Body

XRef section

Trailer

Figure 2.2: Initial structure of every PDF file.

LThe header line is usually followed by another line containing four or more characters with codes
greater than 128 to ensure that applications are able to determine whether the file contains text
contents only or binary data, as well [2, pp. 92-93].

8 2 Foundations

trailer

<<

/Root 1 O R

/ID [<0C7717COB5D2DOC3BFE67DAFE7A3F997> <79DE22583F7228E90C6B393465149058>]
/Size 13

/Prev 746

>>

startxref

39658

%hEQF

Listing 2.3: Trailer of an example PDF file.

If a PDF file is modified in the way compliant to the PDF reference further parts are
appended to the initial file structure. These parts and the whole feature called “in-
cremental update” is described in the following section.

2.1.3 Incremental Updates

Incremental updates allow applications to append new or updated information to the
end of an original PDF file. This results in short saving times when small changes
are applied to large PDF files. Additionally, this allows changes to PDF docu-
ments secured with a digital signature without invalidating the signature because
the originally signed content is still available and not overwritten [2, pp. 98-99].
When a PDF file is extended using an incremental update the following steps are
executed:

1. The new or updated objects are added to the end of the original file directly
behind the old end-of-file marker.

2. The body updates are followed by a new XRef section. This new section only
contains entries for objects which have been updated or added to the file or
should be marked as deleted.

3. Lastly, a new trailer is appended. This trailer must contain all entries from the
previous one, however they might be updated. The new trailer also references
the XRef section from the previous trailer in its /Prev entry [2, p. 99].

This means a PDF file which has been updated n times contains n body up-
dates, n new XRef sections and n updated trailer in addition to the original body,
XRef section and trailer [2, p. 99]. The file structure of an example file ap-
pended using an incremental update is compared to its initial file structure in Fig-
ure 2.4.

Due to the fact that deleted objects or the old versions of updated objects are not re-
moved from the file, a file which has been updated might contain several copies of one

2.1 The Portable Document Format 9

(1) ()

Header Header
Body Body
XRef section XRef section
Trailer Trailer

Body updates

XRef section

Trailer

Figure 2.4: Comparison of the initial file structure of a PDF file (1) and its structure
after it has been appended using an incremental update (2).

object. Applications processing a file that has been appended using incremental up-
dates must read all XRef sections spread in the file and use them in a way that makes
sure they use the latest version? of an object [2, p. 99].

It is also possible to update the version a PDF document is compliant to using
an incremental update: The “document catalog” (see Section 2.1.5) can contain
a /Version entry which overwrites the PDF version specified in the file’s header
2, p. 99].

2.1.4 Objects

In general, almost every component (the pages, pictures and text on these pages,
comments etc.) of a PDF file is an object. The only exceptions are the header,
the XRef sections and their contents, and parts of the trailer. The PDF reference
version 1.7 defines eight “basic types” of objects which can be used to build PDF files
[2, p. 51}

Boolean Objects of the type boolean can be either true or false. They can be
stored in arrays and dictionaries or used in conditional expressions in so-called
“Type 4 Functions” [2, p. 52].3

Strings The basic type string is either represented by characters enclosed in round
brackets, for example (Character String), or hexadecimal data enclosed in
angle brackets, for example <DEADBEEF> [2, p. 53].

2This means the object with the unique object identifier written last to the file.
3Type 4 Functions allow to define and use functions inside of PDF files using a small subset of the
PostScript language [2, p. 175]. These functions are out of the scope of this thesis.

10 2 Foundations

Numbers PDF supports both positive and negative integers and real numbers. For
real numbers there are different representations, for example -0.1 or -.1.
However, the representation using the exponential format (e.g., 1.8E48) is not
supported in PDF [2, p. 52].

Names Case-sensitive character units starting with a /, for example /Type, are so-
called name objects. They need to be unique within a file and are used as keys
or values in dictionaries usually, but can be used in arrays, as well [2, p. 58].

Arrays One-dimension collections of basic type objects can be grouped into arrays®.
This includes arrays themselves which allows the creation of multi-dimension
object collections. Arrays are enclosed in square brackets and written as a
whitespace delimited sequence. The objects an array contains are not re-
stricted to be of the same type; it is also possible to created mixed array. An
example array could be [1.8 (VfL) 48] [2, p. 58].

Dictionaries A dictionary object is a collection of key-value-pair entries enclosed in
double angle brackets. Every value can be accessed using the corresponding
key. While the keys must be name objects, the values can be objects of any
basic type including other dictionaries. According to Adobe dictionaries are
the “main building block” of every PDF file [2, p. 59]. One shortened example
dictionary is depicted in Listing 2.5. This dictionary is the “document catalog”
(described in detail in Section 2.1.5) and contains three entries. For the first
two entries both the keys and values are name objects, while for the third entry
only the key is a name object and the value is a reference to an “indirect”
object.

Streams Objects containing a sequence of bytes between the keywords stream and
endstream are called streams. Additionally, the bytes can be encoded or com-
pressed using a “filter” to decrease the file size. Every stream also includes a
stream dictionary in front of the stream keyword which contains information
about the length of the stream and - if necessary - about the filter needed to
decode/decompress the stream data prior to its usage. Streams can contain dif-
ferent types of data like images or other objects. In contrast to strings streams
can be read incrementally by processing applications and can contain an un-
limited number of bytes theoretically [2, p. 60-62]. There are three special
types of streams: content streams, object streams, and cross-reference streams.
Content streams are used to define the appearances of pages [2, p. 151]. An
object stream consists of a sequence of “indirect” objects and is used to com-
press a greater number of objects resulting in a decreased size of the PDF file
[2, p. 100]. Cross-reference streams are needed to reference the objects stored
in object streams. More information can be found in Section 2.1.6 [2, p. 106].

4Arrays could be used to wrap any kind of object which might be helpful for certain attacks.

2.1 The Portable Document Format 11

Null The null object is denoted by the keyword null and can be used in different
circumstances. For example, dictionary entries whose value is the null object
or an “indirect” reference to the null object are ignored. In every document
there can only be one object of the type null which needs to be referenced if
it is needed in multiple places [2, p. 63].

<<

/Type /Catalog
/Version /1.7
/Pages 2 0 R
>>

Listing 2.5: Shortened “document catalog” as an example for a dictionary object.

All objects can be defined either as “direct” or “indirect” objects. While direct ob-
jects can be only used at the specific place they are defined in the document, indirect
objects can be referenced from anywhere in the document using the keyword R. Di-
rect objects are simply written directly at the place they are used. Indirect objects
always start with a line containing an unique object identifier and the keyword obj
and end with the keyword endobj independent of their object type. The unique ob-
ject identifier contains two numbers: the object number and the generation number.
The object number is incremented for every new object; the generation number is
0 for all objects in a file which has not been extended using incremental updates
[2, pp. 63-64]. An example of an indirect string object with object number 31 and
generation number 0 is shown in Listing 2.6. This object could be referenced from
anywhere in the document using 31 0 R.

31 0 obj
(Character String)
endobj

Listing 2.6: Example definition of an indirect string object with object number 31
and generation number 0.

2.1.5 Special and Important Objects

Every PDF document contains several special objects which serve different important
purposes. In the following, three of these special objects are described:

Document catalog The document catalog is a dictionary object and the root of
the logical hierarchy tree all objects of a document are organized in. It is
referenced by the /Root entry in the PDF file’s trailer allowing applications to
access it easily. Its entries define important information the processing appli-
cation needs to display the document and references to other special objects
[2, p. 137]. For example, its /Version entry states which PDF version the

12 2 Foundations

document is compliant to and overwrites the version stated in the file’s header.
The /Pages entry references the root of the document’s “page tree” (“Pages”)
and the /AcroForm entry its interactive forms dictionary (“AcroForm”). The
entries /PageMode and /OpenAction can be used to specify how the document
should be displayed and which actions should be executed when it is opened
[2, pp. 139-141].

Pages Every page of a document is represented by a dictionary object called “page
object”. The pages are organized in a tree hierarchy called “page tree”. The
root of this tree is a dictionary object called “pages object” and the leaves are
the page objects. This hierarchy enables processing applications to quickly
access a certain page (for example to display it when the document is opened)
without the need to process the whole document first. The pages object con-
tains a /Kids entry which is an array containing either references to page
objects directly or references to intermediate nodes of the tree. These inter-
mediate nodes themselves can contain either references to other intermediate
nodes or references to page objects [2, pp. 143-144].

AcroForm The “interactive forms dictionary” (“AcroForm” dictionary in the fol-
lowing) is a dictionary object containing a /Fields entry. The value of this
entry is an array with references to all interactive fields present in the docu-
ment. Its other entries provide additional information regarding the interactive
forms of the document. The /SigFlags entry specifies characteristics related
to signature fields, for example [2, p. 672].

2.1.6 XRef Information

As described in Section 2.1.2 every PDF file contains an XRef section which is
needed by applications to access indirect objects easily. Applications combine all
XRef sections present in a file to the XRef table which contains information for all
indirect objects. Initially a newly created PDF files contains only one XRef section
which means this section alone is the whole XRef table. However, if a PDF file
is extended or altered using an incremental update a new XRef section is added
to the file. The new XRef table is the combination of all XRef sections present
in the PDF file. All XRef sections have the same structure: They start with the
keyword xref and contain one or more subsections. Every subsection contains XRef
entries for a certain number of objects with continuous object numbers. An XRef
subsection begins with a line containing two numbers. The first number is the object
number of the first entry this subsection contains and the second number indicates
how many entries this XRef subsection contains. Each XRef entry is a single line
consisting of a 10 digit byte offset from the beginning of the file to the beginning
of the object, a 5 digit generation number, and a keyword. The keyword at the
end of the line states if the object number is “in-use” (n) or “free” (f). The object
numbers marked as free are connected in a linked list whose head is the special

2.2 Digital Signatures in PDF 13

xref

08

0000000000 65535
0000000015 00000
0000000078 00000
0000000135 00000
0000000247 00000
0000000330 00000
0000000363 00000
0000000394 00000

B BB BBBB M

Listing 2.7: XRef section of an example PDF file containing entries for the object
numbers 0 to 8.

object number 0 which is always the first entry in the XRef table and has generation
number 65535. If an indirect object is deleted its object number is marked as free, it
is added to the linked list of free object numbers and the corresponding generation
number is increased by one (until the maximum of 65535 is reached) to indicate
the new generation number which should be used when the object number is reused
[2, pp. 93-95]. Listing 2.7 shows an example XRef section containing one subsection
with 8 entries starting with object number 0. All object numbers are in use except
the special object number 0.

Beginning with PDF version 1.5 there is an alternative structure which can be used
to store cross-reference information - cross-reference streams. These streams provide
XRef information in a more compact way and are needed when objects are stored
in object streams [2, p. 106].

2.2 Digital Signatures in PDF

2.2.1 Overview

Digital signatures are used to ensure the integrity of a document’s contents, the
authenticity of its author and the non-repudiation regarding its creation or approval.
Since PDF version 1.3 it is possible to add digital signatures directly to PDF files
using a special form field called “Signature Field”.

Digests In the context of signatures in PDF there are two different digests used.
The “ByteRange Digest” on the one hand is computed over a specific range of bytes.
This byte range does not need to be one continuous range but can be divided into
multiple smaller ranges with bytes excluded in between [2, p. 728]. The “Object
Digest” on the other hand is computed over a subtree of the hierarchy tree the objects

14 2 Foundations

are organized in. The subtree starts from the object referenced by the specific object
digest [2, p. 725].

Signature fields The signature form field references the so-called “signature dic-
tionary” which contains the signature value and other information needed, e.g.,
the encoding used for storing the signature value [2, p. 695]. Listing 2.8 shows
the signature dictionary of an example file. While the signature value is a hex-
adecimal string stored in the /Contents entry, the used encoding is specified by the
/SubFilter entry; version 1.7 of the PDF reference defines three standard values for
this entry: /adbe.x509.rsa_shal, /adbe.pkcs7.detached and /adbe.pkcs7.shal
[2, p. 727]. According to Adobe the /adbe.pkcs7.detached encoding is the most
common one [2, p. 740]. The /Filter entry specifies the preferred signature handler
which should be used to verify the signature. However, the PDF reference allows
to use a different signature handler for verification if the substitute supports the
encoding specified by the /SubFilter entry, as well. Depending on the used encod-
ing the required certificate to verify the signature and certificate chain to verify this
certificate are stored in the /Cert entry (/SubFilter = /adbe.x509.rsa_shal) or
part of the PKCS#7 data in /Contents (/SubFilter = /adbe.pkcs7.detached
or /adbe.pkcs7.shal) [2, p. 727]. For all signatures using a byte range digest
the signature dictionary contains a /ByteRange entry specifying the byte range the
digest is calculated of. This entry is an array containing integer pairs with the
first integer specifying the starting byte offset and the second integer defining the
length of the byte range. This format is needed to be able to include the sig-
nature dictionary in the digest calculation to secure its integrity but exclude the
/Contents entry’s value. The entries /Name, /Location and /Reason are charac-
ter strings set by the author of the signature representing his name, his location
and the reason for applying the signature. The /M entry gives information about
the time of signing and can either be the computer time of the machine used to
apply the signature or a timestamp from a secure time server. However, this value
should only be used when there is no timestamp in the PKCS#7 data included
[2, p.728).

10 0 obj

<<

/Type /Sig

/Filter /Adobe.PPKLite
/SubFilter /adbe.pkcs7.detached
/Name (Vladislav Mladenov)
/Location (Bochum)

/Reason (Security)

/M (D:20180809092110+02°00°)
/Contents <308006092A864886F70D010702A0803080020101310F300D060960864801650304020105 ... 000>
/ByteRange [0 1633 20579 2437]
>>

endobj

Listing 2.8: Signature dictionary of an example PDF file (shortened).

2.2 Digital Signatures in PDF 15

Additional information about the type of the signature can be found in another
object - the “Signature Reference Dictionary” referenced by the /Reference entry
[2, p. 728]. This dictionary contains the transform method needed for the object
digest computation or modification analysis (/TransformMethod entry), the digest
algorithm used (/DigestMethod entry) and depending on the transform method
either directly the value of the digest (/DigestValue entry) or the byte location of
the digest value (/DigestLocation entry).

Signature types The PDF reference defines two different types of signatures: “cer-
tification” signatures and “approval” signatures. Each document can only contain
one certification signature and this signature must be the first one in the document
[6, p- 7]. A certification signature enables the author of a document to restrict
which changes are allowed to be applied to the document after he initially created
it (e.g., allowing the addition of other signatures or comments to the document)
[5]. This is achieved using the “DocMDP” transform method. Approval signatures
are used to approve the current contents of the document; a document can contain
multiple approval signatures [6, p. 7]. Depending on the type of a signature ap-
plications display different information about the signature. A comparison of the
signature panel of “Adobe Acrobat Reader DC” when a PDF file containing a cer-
tification signature and a PDF file containing an approval signatures is shown in
Figure 2.9.

9 Certified by 6hu.de < mt@6hu.de>, KMZS, certificate issued by Bhu.de. éb Signed and all signatures are valid.

@ Signatures @ Signatures

u [i=]+ Validate Al D [E=]+ Validate Al

@ ~ @ Certified by 6hu.de <mt@6hu.de> @ [% Rew. 1: Signed by 6hu.de <mt@6hu.de>
a Only form fill-in, signing and page adding actions are allowed E}; Signature is valid:

Valid certified document: Decument has not been modified since this signature was applied
Document has not been modified since it was certified Signer's identity is valid
Signer's identity is valid Signing time is from the clock on the signer's computer,
Signing time is from the clock on the signer's computer. Signature is LTV enabled
Signature is LTV enabled ~ Signature Details
~ Signature Details Reason: Test Reason
Reason: Test Reason Location: Bochum, DE

Location: Bochum, DE

Figure 2.9: Comparison of the signature panel of “Adobe Acrobat Reader DC” when
a certification signature (left) and an approval signature (right) is present
in the opened document.

16 2 Foundations

Transform methods Transform methods define which objects are included and
which are excluded from the object digest computation needed to compare two
revisions of a document with each other. There are four different transform methods
specified in the PDF reference [2, p. 731]:

e DocMDP: The “DocMDP”® transform method is used to detect or prevent
modifications of the document after it was signed by its author. It is used by
the certification signature type; therefore, there must only be one signature
using this transform method in a document and it must be the first one.
Additional signatures must be approval signatures and use another transform
method. The author of a document can use this transform method to specify
which changes are allowed to be applied to the document without invalidating
his signature. This is achieved by the /P entry in the transform parameter
dictionary: If the value is set to 1 the document is intended to be final and
any change invalidates the signature; the value 2 allows other users to fill in
form fields and add (approval) signatures to the document; if the value is set to
3 users are additionally allowed to create, modify and delete annotations. The
object digest is computed over a subset of objects including the ones whose
modification is not permitted [2, pp. 731-733].

e FieldMDP: The “FieldMDP” transform method is used to detect changes to
the values of a list of specified form fields. The object digest is calculated over
this list of form field objects [2, pp. 736-737]. “FieldMDP” enables the author
of a document to “lock” certain form fields and specify which form fields are
allowed to be filled in without invalidating his signature [6, p. 9].

e UR: The “UR” (“Usage Rights”) transform method is used to detect changes
which would invalidate the “usage rights signature”. This signature is used to
enable “additional interactive features” in the document [2, p. 733].

e Identity: The “Identity” transform method is used when an object digest
is computed without excluding any objects. This means the whole object
hierarchy tree is walked and changes to any object invalidate the signature
[2, p. 737].

Algorithms The algorithms available for the computation of the digest and the
signature as well as the possible lengths of the keys used for signing depend on which
encoding (resp. the value of the /SubFilter entry in the signature dictionary) is in
use and to which PDF version the document is compliant to. In general, the SHA1
digest algorithm and RSA signing algorithm with keys with a length of 1024 bits
are supported. Further algorithms, e.g., digest algorithms from the SHA2 family,
RIPEMD160 or DSA signatures, and longer keys are supported by some encoding
and some PDF versions higher than 1.3. RSA keys with a length of 2048 or 4096 bits

S“MDP? is short for “Modification Detection and Prevention” [2, p. 731].

2.2 Digital Signatures in PDF

17

are supported since PDF version 1.5, for example. The detailed listing of supported
algorithms and key lengths is depicted in Figure 2.10.

adbe.pkcs7.detached

SubFilter value

adbe.pkcs7.shal

adbe.x509.rsa.sha1?

Message Digest

SHA1 (PDF 1.3)
SHA256 (PDF 1.6)
SHA384 (PDF 1.7)
SHAS512 (PDF 1.7)
RIPEMDI160 (PDF 1.7)

SHA1 (PDF 1.3)

SHA1 (PDF 1.3)
SHA256 (PDF 1.6)
SHA384 (PDF 1.7)
SHA512 (PDF 1.7)
RIPEMD160 (PDF 1.7)

RSA Algorithm Support ~ Up to 1024-bit (PDF 1.3) See adbe.pkes7.detached See
Up to 2048-bit (PDF 1.5) adbe.pkes7.detached
Up to 4096-bit (PDF 1.5)

DSA Algorithm Support ~ Up to 4096-bits (PDF 1.6) See adbe.pkcs7.detached No

a. Despite the appearance of sha1 in the name of this SubFilter value, supported encodings are not limited to the
SHA1 algorithm. The PKCS#1 object contains an identifier that indicates which algorithm is used.

b. Other digest algorithms may be used to digest the signed-data field; however, SHA1 is always used to digest the
data that is being signed.

Figure 2.10: Digest and signature algorithms and the maximum key lengths sup-
ported by different encodings and PDF versions.

Visible signatures Signatures in PDF files can be either “visible” or “invisible”.
Generally, every signature is associated with an “annotation”. While the annotation
has size 0 and the details (e.g., result of the verification and author) of invisible
signatures can only be accessed using user interface (UI) elements of the processing
application, visible signatures include a visible annotation on a page of the docu-
ment. This annotation usually shows the result of the signature’s verification and
additional information, for example the author of the signature. The appearance of
visible signatures contains multiple layers, each represented by an “XObject”, and
is customizable by its author [3, pp. 8-9].

18 2 Foundations

2.2.2 Signing Process

When a user wants to add a digital signature to an existing PDF file he makes use
of a PDF processing application and follows the instructions in the application’s
UL He selects a present public-/private key pair or generates a new one to sign
the PDF file and finally the signature is created and appended to the file using
an incremental update. However, on the technical side there are multiple steps
in the signing process. In the following, the steps of adding a visible approval
signature which uses a byte range digest to a previously unsigned example document
are given. Prior to the signing process the example file contains only 7 objects
representing a document with one page displaying the string “Hello World!”. The
signed version of this document contains 14 objects and is later used as a basis for
the evaluation described in Chapter 5. The signed document is depicted in Appendix
Al.

Singing process:
1. The document is read as a byte stream to perform the following actions.

2. New and updated objects are appended to the original document: First, an
updated document catalog (object 1 0) is added to the document. It includes
a new AcroForm dictionary which references the new signature field (object
8 0) and an object needed for its appearance (object 9 0). Afterwards these
two objects are added to the document. The signature field’s value (/V entry)
is a reference to the signature dictionary (object 10 0) which is added to
the document, as well. It contains an /Contents entry with a placeholder
long enough for the signature value and a /ByteRange entry with worst-case
placeholder values excluding only the value of the /Contents entry. Now the
one page the document contains is updated (object 3 0) to add a reference
to the signature field. This is necessary because the visible signature should
be displayed on this page. Afterwards the objects 11 0, 12 0, 13 0 and 14
0 are added to the document. These objects define the details of the visible
appearance of the signature.® Finally, a new XRef section (containing entries
for all new and updated objects) is calculated and appended to the file together
with an updated trailer and the final %%EOF marker.

3. After all required objects are added, the actual byte offset of the /Contents
entry can be calculated. In order to exclude its value from the signature
verification the /ByteRange entry is updated correspondingly.

4. The hash over the bytes specified by the /ByteRange entry is calculated using
one of the available algorithms (see Figure 2.10). The choice which specific
algorithm is used depends on the used application and its configuration.

5These objects are not described in detail because the visible appearance is not in the scope of
this thesis.

2.2 Digital Signatures in PDF 19

5. The calculated hash value is signed using the user’s private key and encoded
as specified by the value of the /SubFilter entry. Depending on the used
encoding additional data (e.g., the signer’s certificate, the certificate chain,
revocation information or timestamps) is encoded along with the signature
value.

6. Finally, the encoded data is placed in the value of the /Contents entry (as a
hexadecimal string [2, p. 727]) overwriting the placeholder. If the placeholder
was longer than the new encoded data the rest of the placeholder is overwritten
with zeros.

(6, p. 5]

Note: A specific signing process might include additional steps depending on the
application used to sign the document, its configuration and, the type of signature
applied.

2.2.3 Verification Process

The verification of a digital signature in a PDF file is executed in the background
when a user opens a signed PDF file with a processing application which supports
digital signatures. While the details of the verification process depend on the specific
processing application the general structure is similar for all processing applications.
In the following, the steps of the verification process when using “Adobe Acrobat”
are described as an example [4, p. 2[:

1. First the value of the /ByteRange entry is used to calculate the hash value
over the document excluding the value of the /Contents entry. The calculated
hash value is compared to the value stored in the signature. If the values differ
the verification process is continued but the user is notified that the document
was altered.

2. The certificate chain is built to ensure that the signer’s certificate is trusted.
There must be at least one path from the certificate to a trusted anchor.

3. The revocation information for the signer’s certificate and the certificates in
the certificate chain is checked to ensure that the certificates were valid at
the time the document was signed. If both information to use the Online
Certificate Status Protocol” (OCSP) and Certificate Revocation Lists® (CRL)
is available, Acrobat tries to use OCSP first.

4. If the signature contains a timestamps from a trusted server the certificate for
the timestamp is verified in the same way as the certificates described above
including checking its revocation information.

"https://tools.ietf.org/html/rfc6960
Shttps://tools.ietf.org/html/rfc5280

https://tools.ietf.org/html/rfc6960
https://tools.ietf.org/html/rfc5280

20 2 Foundations

2.3 Attacker Model

For the practical evaluation of the attack classes presented in Chapter 3 it is im-
portant to specify an attacker model. This allows to determine whether the result
of an executed manipulation is considered to be a successful attack or not. The
attacker model presented in the following defines two different Ul-layers presenting
information about the signature and its validity to the user: The first Ul-layer is the
information present when a signed document is opened using one of the viewer ap-
plications without any further actions executed by the user. The second Ul-layer is
the information accessible through different Ul options available in the application.
This includes both clicking on visible signature appearances and opening signature
panels or executing certain program functionalities like “validating all signatures”.
All attack classes defined and evaluated in this thesis are based on the following
attacker model:

The attacker is in possession of a valid and standard-compliant PDF document
signed by a third-party using its private key. The document has not been al-
tered after the application of the digital signature and the signature is valid from
a cryptographic point-of-view. All viewer applications against which the manip-
ulations are executed later trust the signer’s certificate. When the document is
opened they display it without error messages and successfully verify the validity
of the signature. Depending on their normal behavior they display a message to
the user stating that the document contains a valid digital signature and has not
been modified since this signature was applied on the first, the second or on both
Ul-layers.

The attacker manipulates the document in different manners depending on the spe-
cific attack class he utilizes and exchanges the content displayed when the document
is opened. He has no access to the third-party’s private key. Therefore, he is not
able to forge a cryptographically valid signature for the manipulated document. Af-
ter he applied the manipulation, he makes the manipulated document available to
the victim. The victim opens the manipulated document using one of the viewer
applications. It does not know that the document was manipulated but expects the
document to contain a digital signature. It further expects the viewer application
to display any indication that a signature is present on any Ul-layer and not display
any warning or error messages regarding the verification or validity of signatures or
certificates used in the context of the signatures on the first Ul-layer. If the viewer
application’s behavior matches the victim’s expectations the victim does not suspect
that the document might be manipulated and uses it as it would use the original
document.

An attack is considered successful if the manipulated content is displayed by the
viewer application and no warnings or errors regarding a detected modification of
the document after the signature was applied is displayed. The success of an attack
can be classified depending on the two Ul-layers: If the information presented on

2.3 Attacker Model 21

the second Ul-layer states that the signature is invalid or the document has been
modified after the application of the signature the attack can still be classified as
successful for the first Ul-layer. On the other hand an attack resulting in infor-
mation displayed which states that the signature is invalid or the document has
been modified after the application of the signature on the first Ul-layer always
results in an unsuccessful attack. This classification is independent of the informa-
tion presented on the second Ul-layer because the victim expects no notice that the
signature is invalid or the document has been altered on the first Ul-layer. If the
application does not show information regarding the signature on the first Ul-layer
in general and states that the signature is valid and the document has not been al-
tered on the second Ul-layer the attack is considered to be successful for the second
Ul-layer.

It is important to note that the victim does not perform any type of forensic analysis
of the manipulated document. If a forensic analysis is performed all manipulations
described in this thesis can be detected.

3 Attack Classes

This chapter introduces the three attack classes which have been evaluated in the
terms of this thesis. First, the general idea each attack class is based on is presented.
Afterwards, the details including different strategies or variants of each attack class
are explained.

3.1 Signature Exclusion

3.1.1 Attack ldea

The basic idea of the attacks contained in the attack class “Signature Exclusion” is to
confuse the signature verification logics and the information displaying logics of PDF
processing applications. The goal of these attacks involves two aspects: The first
one is to prevent the verification logic from being able to verify the digital signature
present in a PDF document. Additionally, it is necessary to make the application dis-
play information stating that the present signature is valid.

3.1.2 Attack Details

Different objects of a signed document can be manipulated to achieve the goal de-
fined above. These manipulations can be divided into two different strategies: The
first strategy is to remove parts of the signature dictionary which are essential for
the verification of the signature. Examples are the /ByteRange entry specifying
which part of the document is signed, the /Contents entry whose value contains
the signature value itself, or the /SubFilter entry stating which encoding was used
to store the signature value. The second strategy is based on a different approach
and summarizes the deletion of references to the signature. The /V entry which ref-
erences the signature dictionary and /P entry which references the page the visible
signature is displayed on from the form field dictionary could be altered or removed,
for example. These two strategies result in a long list of possible manipulations.
Due to the limited time of this thesis it was not possible to evaluate all manipu-
lations which have been devised. Therefore, the evaluation described in Chapter 5
is based on the 24 manipulations depicted in Table 3.1. These 24 manipulations
were choosen to cover both strategies with a systematic approach. For all entries
the choosen manipulations include replacing its value with null, removing its value

24

3 Attack Classes

and removing the entry itself, for example. Additionally, the choosen manipulations
are the ones most likely to be successful according to the author’s judgement. A

complete list of all devised manipulations and ideas for further manipulations can
be found in Appendix A.3.1 and could be used for a more comprehensive evaluation

of the Signature Exclusion attack class in the future.

No. | Entry Description Result

1 /Contents Replacing the entry’s value with an | /Contents <>
empty hexadecimal string.

2 /Contents Replacing the entry’s value with | /Contents <00>
a hexadecimal string containing a
null byte.

3 /Contents Replacing the entry’s value with | /Contents null
the null object.

4 /Contents Removing the entry’s value. /Contents

5 /Contents Removing the entry. -

6 /ByteRange | Replacing the entry’s value with an | /ByteRange []
empty array.

7 /ByteRange | Replacing the entry’s value with an | /ByteRange [0 0 0 0]
array containing zeros.

8 /ByteRange | Replacing the entry’s value with an | /ByteRange [1 -1500 2000 100]
array containing a negative value.

9 /ByteRange | Replacing the entry’s value with an | /ByteRange [0 1500 1000 100]
array containing overlapping byte
ranges.

10 | /ByteRange | Replacing the entry’s value with an | /ByteRange [0 1500 2000000 100]
array containing a byte range out-
side of the document.

11 | /ByteRange | Replacing the entry’s value with an | /ByteRange [0]
array with a wrong size.

12 | /ByteRange | Replacing the entry’s value with | /ByteRange null
the null object.

13 | /ByteRange | Removing the entry’s value. /ByteRange

14 | /ByteRange | Removing the entry. -

15 | /SubFilter | Replacing the entry’s value with a | /SubFilter /None
non-existing name object.

16 | /SubFilter | Replacing the entry’s value with | /SubFilter null
the null object.

17 | /SubFilter | Removing the entry’s value. /SubFilter

18 | /SubFilter | Removing the entry. -

19 | /v Replacing the entry’s value with | /V null
the null object.

20 | /V Removing the entry’s value. /v

21 | /v Removing the entry. -

22 | /P Replacing the entry’s value with | /P null
the null object.

23 | /P Removing the entry’s value. /P

24 | /P Removing the entry. -

Table 3.1: 24 different manipulations evaluated as part of the Signature Exclusion

attack class.

3.2 Incremental Update Abuse 25

3.2 Incremental Update Abuse

3.2.1 Attack ldea

“Incremental Update Abuse” attacks are based on the idea of applying malicious
changes to a signed document using the incremental update feature specified in the
PDF standard. As described in Section 2.1.3 the contents of the original file are kept
unchanged and the signature is still valid after applying incremental updates to PDF
files. Usually PDF processing applications display a note informing the user that
the document has been modified after the signature was added when an incremental
update was applied. However, instead of applying standard-compliant incremental
updates the attacks use manipulated variants excluding certain parts of or adding
additional parts to regular incremental updates. This means while updates to the
original file’s body are appended to the original file, the incremental update might
not include a new XRef section or a new trailer (depending on the specific attack).
The updates to the body consist of manipulated objects changing the visible content
of the document. The goal of these manipulated incremental updates is to make the
applications display the exchanged content of the document while still informing the
user that the signature is valid and the document has not been modified after the
signature was applied.

3.2.2 Attack Details

During this thesis differently structured incremental update variants were abused
to manipulate the original document. The evaluation described in Chapter 5 is
based on the four variants depicted in Figure 3.2 and described in the follow-
ing:

Variant 1: without XRef section and trailer The first variant of manipulated in-
cremental updates simply adds the manipulated objects which change the vis-
ible content of the document to the end of the file. Depending on the specific
attack there might be additional content added to the file, as well. However,
there is neither a new XRef section referencing the manipulated objects, nor
a new trailer, appended to the file.

Variant 2: without XRef section, but with trailer Additionally to the manipulat-
ed objects a new trailer is appended to the file when applying an incremental
update of this variant to a document. This addition is reasoned by the assump-
tion that certain applications ignore content placed behind the last trailer of
a file.

Variant 3: with new XRef section and trailer Similar to regular incremental up-
dates the manipulated objects, a new XRef section and a new trailer are
appended to the file. However, the new XRef section differs from regular

26 3 Attack Classes

incremental updates in certain ways depending on the specific attack. In this
thesis two different XRef sections were used: The first one is an empty XRef
section. This means it does not contain a subsection or any entries but only
consists of the keyword xref. The second one contains entries for all manipu-
lated objects and all objects which were part of the incremental update added
to the file when the signature was applied.

Variant 4: without XRef section and trailer, but with copy of signature This va-
riant is based on variant 1 and does not include adding a new XRef section
or trailer to the file. However, the manipulated objects appended to the end
of the file include a copy of some objects related to the signature from the
original file. These objects are the field dictionary of the signature form field
and the signature dictionary.

Variant 1 Variant 2 Variant 3 Variant 4
Header Header Header Header
Body Body Body Body
XRef section XRef section XRef section XRef section
Trailer Trailer Trailer Trailer
Body updates Body updates Body updates +

signature copy

Trailer XRef section

Trailer

Figure 3.2: Different file structures after the four manipulated incremental update
variants were applied to the original document.

3.3 Signature Wrapping

3.3.1 Attack ldea

The attack class called “Signature Wrapping” summarizes attacks which share the
same basic idea: The signed data of the original document is (partly or completely)
wrapped in another data structure (e.g. a stream) and placed at the end of the ma-
nipulated file. Manipulated objects which change the displayed content of the docu-
ment and a new XRef section referencing these objects are added to the document.
The resulting file structures allow an attacker to trick the applications into display-
ing manipulated content without the need of applying an incremental update. As
the signed data remains unaltered the applications are able to successfully validate

3.3 Signature Wrapping 27

the present signature. The absence of an incremental update appended to the end of
the file could help to prevent applications from displaying notices that the document
has been altered after the signature was applied.

3.3.2 Attack Details

The Signature Wrapping attacks can be divided into two different approaches: The
first approach is based on placing the manipulated objects and XRef section in
between the two signed byte ranges of the original document. This means the
second signed byte range which starts with the /ByteRange entry of the signature
dictionary is moved to the end of the file. A new /ByteRange entry is added to the
signature dictionary referencing the new location of the moved second signed byte
range and the signature dictionary object is closed. Afterwards, the manipulated
objects and the new XRef section referencing these objects is added behind the
signature dictionary. Some applications also require the addition of a trailer behind
the new XRef section; a copy of the original file’s last trailer can be used for this
purpose. It is important for the attack to work that the startxref value of the
file’s last trailer is equal to the byte offset of the newly added XRef section. As
the file’s last trailer is part of the signed data and therefore not adjustable without
invalidating the signature, it might be necessary to add padding in front of the newly
added XRef section. The padding can be a fitting number of whitespaces. If the
byte offset of the new XRef section is already too high it is possible to decrease it
by deleting the zeros at the end of the hexadecimal value of the /Contents entry.
These zeros are used as padding because the actual size of the signature value is
unknown prior to its calculation. They are not part of the actual signature value
(see Section 2.2.2 for details).

The second approach is to connect the two signed byte ranges to one single byte
range and place it at the end of the file. In order to do this a copy of the first
signed byte range needs to be placed between it and the second signed byte range.
This copy needs to be modified by completely removing the signature value (the
hexadecimal value of the /Contents entry) because it is dividing the two signed
byte ranges in the original document. Afterwards, the /ByteRange entry of the
original signature dictionary has to be modified to reference the new single signed
byte range at the end of the file. The new value of the /ByteRange entry can either
be an array containing one byte range with the size 0 and the single signed byte
range at the end of the file or an array containing a short byte range at the beginning
of the file! and a part of the signed byte range at the end of the file. This might lead
to successful attacks for applications which do not accept a byte range with size 0.
After the /ByteRange entry is adjusted to reference the signed data at the end of

LThe beginning of every PDF file starts with %PDF- independently of the version the file is compliant
to. Therefore, a byte range from bytes 0 to 5 can always be used as the first byte range referenced
by the /ByteRange entry.

28 3 Attack Classes

the file, manipulated objects can be added prior to the signed data. The advantage
of this second approach is that it is also possible to directly manipulate the objects
from the first original signed byte range instead of adding new manipulated objects
to the file. Finally, an XRef section and a trailer have to be added in front of the
signed data at the end of the file. While the trailer can be a copy of the original
file’s last trailer the XRef section must be a new one. It must contain XRef entries
for all manipulated objects added to the file. As the signed data contains valid
PDF objects processing applications might recognize these objects and detect the
manipulation. In order to “hide” the signed data from the processing application
it can be wrapped in different data structures the PDF standard defines. It can be
placed inside of a dictionary or a stream, for example. In both cases the wrapping
object can be either a direct or an indirect one. If a stream is used as the wrapping
object it is possible to state that the content of the stream is deflated or a XML-
based metadata stream, additionally. If a metadata stream is used the signed data
can be placed inside of a “CDATA” section because it is not valid XML data.? Using
these different wrappings the 41 manipulations listed in Table 3.4 were devised and
evaluated in Chapter 5. Detailed descriptions for all manipulations can be found in
Appendix A.3.2. All manipulations include the replacement of the displayed content
of the original file.

For both approaches it is necessary to add XRef entries for all objects referenced in
the XRef sections in the signed byte range moved to the end of the file to the newly
added XRef section. Otherwise applications which rely on the XRef information are
not able to locate the objects referenced in these XRef sections and are not able to
process the PDF file correctly. These XRef entries must contain the correct byte
offsets to the corresponding objects. It might be necessary to place a copy of the
objects contained in the signed byte range to the manipulated objects and reference
these copies instead of the original objects because some applications might ignore
objects placed behind the XRef section.

The resulting file structures when one of the approaches is applied to a signed PDF
document are compared to the original file structure in Figure 3.3. The yellow part
is the first byte range specified by the /ByteRange entry of the signature dictionary,
the green part the second byte range. The blue parts are the content added to the
file to change the visible apprearance of the document.

2CDATA sections allow to include arbitrary strings in XML documents. The contents of CDATA
sections are not interpreted by the XML interpreter which prevents errors with strings containing
anything but valid XML data (see https://www.w3.org/TR/xml/#sec-cdata-sect).

https://www.w3.org/TR/xml/#sec-cdata-sect

3.3 Signature Wrapping 29

@ @ ®) “
4 4 [|:
%PDF-1.4
[Header [Header Header 5
a 700nmt:s < .. > a 7contnnts < .> 7Ccntents <. > "/Contents <. >
/ByteRange [0 a b* c] /ByteRange [0 0 a* b*] /ByteRange [0 5 a* b*]
>> endobj >> endobj >> endobj

Body updates Body updates Body updates

XRef section XRef section XRef section

Trailer

%PDF-|

Trailer

b* a* — a* —

b*L— prl—

Figure 3.3: File structures of a signed PDF file before and after different Signature
Wrapping attacks were applied: (1) Original file structure, (2) first Sig-
nature Wrapping approach, (3) second Signature Wrapping approach,
(4) variant of the second Signature Wrapping approach. Yellow = first
signed byte range, green = second signed byte range, blue = newly added
content.

30

3 Attack Classes

Wrapping

First Byte Range

None

Dictionary

Indirect dictionary object

[— 2
e R =S N U U IS

Stream

e Gy S S gy Y
N O T i W N

Indirect stream object

NN NN+~ =
W N = OO

Deflated indirect stream object

NN NN DN N
© 00 N O Ot~

XML (indirect stream object)

W W W www
T WO N~ O

CDATA (indirect stream object)

00

w
(=}

None

=W W W
O © o

Indirect stream object

|

41

‘ None

First half of signed data

Table 3.4: 41 different manipulations evaluated as part of the second approach of
the Signature Wrapping attack class.

4 Tool Development

The initial planning of this thesis contained the development of a tool which should
allow to execute the specific attacks devised during this thesis automatically. The
process of developing, the problems occured during this process and the final result
are described in the following chapter. First, a short overview is given. Afterwards,
the two approaches which have been pursued are explained in detail.

4.1 Overview

Initially, it was planed to develop a tool which allows the user to automatically
apply the manipulations and attacks described in Chapter 3 to a given PDF file.
This idea was based on the benefits a tool would be for both the evaluation described
in Chapter 5 and future evaluations. During the first phase of this thesis information
regarding both how PDF files are structured and which tools could be used to view,
create or manipulate PDF files was collected. The first tool found which seemed to
be able to fulfill all these tasks was the Java-based framework “Apache PDFBox”!.
Therefore, the first approach for developing a tool to execute all the manipulations
in the scope of this thesis was to use PDFBox as the basis. However, during the
development based on PDFBox several problems occured. As these problems were
critical to the functionality of the tool and could not be fixed easily it was concluded
that PDFBox is not suitable for the tool development. Therefore, a second approach
based on Python was started. In contrast to the first approach the second one does
not make use of any framework or library to parse the PDF files but is completely
based on modifying the PDF files like regular text files. This approach could be
used to successfully create scripts for the first attack class - the Signature Exclusion
attacks. During the evaluation of the manipulations contained in the attack classes
Incremental Update Abuse and Signature Wrapping the conclusion was drawn that
it is not meaningful to automate the manipulations. This is reasoned by the fact that
the behavior of the applications differs strongly. Thus, it is necessary to conduct the
evaluation of these two attack classes in an adaptive manner for every application
independently and adjust the manipulated files accordingly to previous observations
manually during the evaluation. Based on this conclusion the decision was made
that no tool will be developed for the Incremental Update Abuse and Signature
Wrapping attack classes.

"https://pdfbox.apache.org/

https://pdfbox.apache.org/

32 4 Tool Development

4.2 First Approach: Java Tool Based on PDFBox

As mentioned before, the first approach was based on the Java framework PDFBox.
This framework allows to import existing PDF documents and parse their contents
into a logical structure of Java objects. These Java objects can be modified in differ-
ent ways depending on the API provided by the framework. While the capabilities of
the framework seemed to be sufficient for the development of the planed tool at first,
it turned out that this was not the case: First the problem arose that the PDFBox
API makes it impossible to execute several kinds of manipulations described in Sec-
tion 3.1. Some of these manipulations violate the PDF standard (e.g., deleting the
value of a key in a dictionary) and are therefore not executable with PDFBox. Other
manipulations (e.g., replacing the value of the /V entry of the form field dictionary
with null) are compliant to the standard but still not executable with PDFBox
because its API does not allow the access to all objects. For example, it was not
accomplished to access the form field dictionary of the signature. The API does not
provide an option to access objects which are referenced by other objects - in this
example a form field dictionary referenced in the /AcroForm entry’s value of the
document catalog.

However, even for the manipulations which could be executed using PDFBox’s API
it was not possible to create working test files. This is reasoned by the fact that PDF-
Box does only allow to save the modified document in two ways: Either PDFBox
performs a standard-compliant regular incremental update and appends the mod-
ified objects to the end of the original file or creates a completely new file. Both
options result in PDF files which cannot be used for the evaluation of the devised
attack classes. They either invalidate the signature present in the original document
or result in a note that the document has been modified after the signature was
applied.

After these problems occured the PDFBox documentation and source code was
studied to find a solution. As there was no way found to solve or work around these
problems in a reasonable amount of time the conclusion was made that PDFBox is
not suitable for the development of the planed tool.

4.3 Second Approach: Tool Based on Python Scripts

The second approach is based on a different idea: Instead of parsing the PDF file into
a logical structure and modifying the PDF objects as data structures, the PDF file is
interpreted as a regular ASCII-encoded text file and modified by replacing existing
text with manipulated one. This allows to execute all manipulations described
in Section 3.1 (and more) regardless of whether they are compliant to the PDF
standard or not. In order to apply one of the manipulations to an existing file
regular expressions are used to locate the original version of the object which should

4.3 Second Approach: Tool Based on Python Scripts 33

be manipulated. Afterwards, the original object is replaced with the manipulated
one and the modified file is saved. For this approach multiple scripts based on
Python were developed. Python was choosen because of its general simplicity and
easy-to-use regular expressions.

The developed tool consists of the following seven Python scripts:
e executeManipulations.py
e manipulateByteRange.py
e manipulateContents.py
e manipulateDocumentCatalog.py
e manipulateFilter AndSubFilter.py
e manipulateSignatureReferenceDictionary.py
e pdfmanipulation.py

The script executeManipulations.py is used to start the tool and executes all “en-
abled” manipulations to an original PDF file given as a console parameter. It ex-
ecutes the manipulations one after the other and creates a new manipulated PDF
file for each manipulation. The manipulations are divided into five collections de-
pending on the object which is manipulated. The five collections are implemented
as the scripts: manipulate ByteRange.py, manipulateContents.py, manipulateDoc-
umentCatalog.py, manipulateFilter AndSubFilter.py and manipulateSignatureRefer-
enceDictionary.py. Each collection contains a function called getManipulations
which returns a list of the manipulations it provides. As these lists are used by
execute Manipulations.py to execute the manipulations of the corresponding collec-
tion the getManipulations functions allow to “disable” certain manipulations by
removing their names from the list object. Additionally, it is possible to disable
collections completely by removing them from the manipulation_classes list in
execute Manipulations.py.

All manipulations make use of another script called pdfmanipulation.py. This script
was originally developed by Christian Mainka and extended to allow the imple-
mented manipulations during this thesis. It contains helper functions which allow
to locate and replace objects and to update the XRef information of the manipu-
lated file after the manipulations have been applied. Due to these helper functions
the manipulations themselves are very easy to implement and often only contain
of one single line of code. The replacement of the /ByteRange entry’s value of the
signature dictionary with an array which contains four zeros is shown in Listing 4.1
as an example.

While only the 24 manipulations described in Section 3.1 were used for the evaluation
of the Signature Exclusion attack class presented in Chapter 5, a total of 73 ma-
nipulations is implemented in the Python scripts. The 56 other manipulations were

34 4 Tool Development

def replaceValueWithArrayZeros (inputPDF, updateXrefBoolean):
return replaceValueInDictionary(inputPDF, "ByteRange", "[0 O O 0]", updateXrefBoolean)

Listing 4.1: Manipulation which replaces the /ByteRange entry’s value with an array
containing four zeros.

disabled for the evaluation by removing them from the described lists. The imple-
mentation of the not used manipulations is reasoned by the fact that the implemen-
tation took place prior to the final decision which manipulations should be included
in the evaluation. All implemented manipulations can be found in the complete
list of manipulations devised for the Signature Exclusion attack class in Appendix
A.3.1. Implemented manipulations are written in italic.

It is important to note that while the scripts worked flawlessly for several example
PDF files during this thesis they are not developed to work for every signed PDF
file and might result in errors or wrong and unsuccessful manipulations for certain
PDF files. The following limitations are known:

e The functions used to locate objects in the document are based on regular
expressions and do not interpret the document in a logical way. Therefore, it
is possible that the functions might return a wrong object resulting in a wrong
or unsuccessful manipulation.

e The localization of dictionaries is based on regular expressions searching for
name objects present as keys in objects. It is possible that the searched name
object in present in multiple dictionaries. The scripts always use the last object
where the name object was found.

e The scripts are intended to be used with PDF files containing only one sig-
nature. If multiple signature dictionaries are present the manipulations will
always be applied to the last one.

The scripts developed during this thesis and the helper script developed by Christian
Mainka are available at: https://pdf-insecurity.org/

https://pdf-insecurity.org/

5 Evaluation

The theoretical attack classes illustrated in Chapter 3 need to be evaluated prac-
tically to determine whether they result in successful attacks in real-life scenarios.
This chapter contains the details of this comprehensive evaluation. First, a short
overview is given. Afterwards, the structure and details of the testing environment
are pointed out and the evaluated PDF processing applications are listed. Finally,
the results of the evaluation are described.

5.1 Overview

The evaluation can be roughly divided into three parts - one part for each of the
attack classes explained in Chapter 3. The structure of the evaluation is depicted
in Table 5.1. The first part is the evaluation of manipulations summarized in the
Signature Exclusion attack class. The 24 manipulations listed in Table 3.1 could
be executed automatically for a given original document using a Python script as
described in Chapter 4. Afterwards, the resulting 24 test files were opened in all 34
processing applications named in Table 5.2. In case the processing application did
not display a notice stating that the signature is invalid or the document has been
altered after the application of the signature an advanced test file was created to
verify the success of the manipulation. These advanced test files exchange the dis-
played content of the original document with a manipulated page. If the processing
application displays the manipulated page and still states that the signature is valid
and the document has not been altered on Ul-layer 1 the attack is considered suc-
cessful for Ul-layer 1. Afterwards, Ul-layer 2 is checked and the attack is considered
successful for Ul-layer 2 as well, if this layer does not show any information stating
an invalid signature is present in the document or the document has been modified
after the signature was applied. If the application does not show information re-
garding the signature on Ul-layer 1 in general, Ul-layer 2 is checked and the attack
is considered to be successful for Ul-layer 2 if it states that the signature is valid
and the document has not been altered.

The second part of the evaluation was focused on the Incremental Update Abuse
attack class and the third part on the Signature Wrapping attack class. As men-
tioned in Chapter 4, automation for these attack classes was not accomplished in
this thesis. Therefore, these attack classes were evaluated manually. This manual

36 5 Evaluation

evaluation was conducted in the following way for every application: First, the ap-
plication was evaluated in the terms of Incremental Update Abuse attacks in an
adaptive manner. For this purpose the original document was modified by apply-
ing the different manipulated incremental update variants presented in Section 3.2.
Afterwards, the application was evaluated in the terms of Signature Wrapping at-
tacks. Again the original document was modified by adding new objects. However,
these objects were not appended to the end of the original file but either placed in
between the two byte ranges secured by the present signature or in front of them.
The second approach of the Signature Wrapping attacks was evaluated by creating
41 test files with different wrappings around the signed data. These test files were
opened in all applications to evaluate whether they are vulnerable to the manipula-
tion. For both parts of the evaluation the goal of the manipulations was to change
the visible content of the document without triggering any error or warning mes-
sages stating that the present signature is invalid or the document has been changed
after the signature was applied. Depending on the tested application certain ob-
jects and manipulation steps were necessary to successfully exchange the displayed
content.

Part | Attack Class Methodology

1 Signature Exclusion 24 script generated test files based on se-
lected manipulations (see Table 3.1) opened
in all applications.

2 Incremental Update Abuse | Independent evaluation of all applications
based on four different variants (see Sec-
tion 3.2). Test files manually crafted in an
adaptive manner depending on previous re-
sults.

Independent evaluation of all applications
based on the first approach (see Section 3.3).
Test files manually crafted in an adaptive
3 Signature Wrapping manner depending on previous results.

41 manually crafted test files based on se-
lected manipulations (see Table 3.4) opened
in all applications.

Table 5.1: Overview of the structure of the evaluation.

It is important to note that the evaluation of some applications listed in Table 5.2
regarding their vulnerability against Incremental Update Abuse or Signature Wrap-
ping attacks was not conducted by the author of this thesis but his advisors. How-
ever, their results are presented in this chapter for the sake of a complete and
comprehensive evaluation. The corresponding evaluation results in Section 5.3 are
marked with an asterisk.

5.1 Overview

0OS Application Version
Windows | Adobe Acrobat Reader DC 2018.011.20058"
Windows | Adobe Reader XI 11.0.10
Windows | eXpert PDF 12 Ultimate 12.0.21.38686
Windows | Expert PDF Reader 9.0.180
Windows | Foxit Reader 9.2.0.9297
Windows | LibreOffice 6.0.6.2
Windows | Master PDF Editor 5.1.12

Windows | Nitro Pro 11.0.3.173
Windows | Nitro Reader 5.5.9.2
Windows | Nuance Power PDF Standard | 3.0.0.17
Windows | PDF Architect 6 6.0.37.38653
Windows | PDF Editor 6 Pro 6.4.2.3521
Windows | PDFelement 6 Pro 6.8.0.3523
Windows | PDF Studio 12 Pro 12.0.7
Windows | PDF Studio Viewer 2018 2018.1.0
Windows | PDF-XChange Editor 7.0 (Build 326.1)
Windows | PDF-XChange Viewer 2.5 (Build 322.9)
Windows | Perfect PDF 10 Premium 10.0.0.1
Windows | Perfect PDF Reader 13.0.3 (2.0)
Windows | Soda PDF 9.3.17
Windows | Soda PDF Desktop 10.2.05.1128
Linux Adobe Reader 9 9.5.5

Linux LibreOffice 6.0.3.2

Linux Master PDF Editor 5.1.12

Linux PDF Studio 12 Pro 12.0.7

Linux PDF Studio Viewer 2018 2018.1.0
macOS Adobe Acrobat Reader DC 2018.011.200587
macOS Adobe Reader XI 11.0.10

macOS LibreOffice 6.1.0.3

macOS Master PDF Editor 5.1.24

macOS PDF Editor 6 Pro 6.6.2.3315
macOS PDFelement 6 Pro 6.7.1.3355
macOS PDF Studio 12 Pro 12.0.7

macOS PDF Studio Viewer 2018 2018.1.0

37

Table 5.2: List of all 34 PDF processing applications and their versions evaluated
for different operating systems.

3An automatic update to version 2018.011.20063 was applied prior to the evaluation of the Incre-
mental Update Abuse and Signature Wrapping attack classes by mistake.
2 An automatic updates to version 2018.011.20063 was applied prior to the evaluation of the Incre-
mental Update Abuse attack class by mistake. Another update to version 2019.008.20074 was

applied prior to the second approach of the Signature Wrapping attack classes by mistake.

38 5 Evaluation

As described in Chapter 2, there are two different possibilities to store XRef in-
formation in PDF files: XRef sections and XRef streams. XRef streams have a
much higher complexity than regular XRef sections. At the beginning of this thesis,
the decision was made to work with PDF files which are compliant to PDF ver-
sion 1.4 and do not involve XRef streams. Due to the limited processing period of
this thesis it was not possible to survey files whose XRef information is based on
XRef streams at a later time. Therefore, XRef streams are not in the scope of this
thesis. All test files used for the evaluation are based on the original document de-
picted in Appendix A.1. It is compliant to PDF version 1.4 and uses XRef sections.
However, the ideas and attacks described should be applicable to PDF files which
are compliant to PDF versions 1.5, 1.6 and 1.7 and make use of XRef streams, as
well.

“Nuance Power PDF Standard” and the three macOS applications “Master PDF Ed-
itor”, “PDF Editor 6 Pro” and “PDFelement 6 Pro” state that the signature present
in the unaltered original document is invalid. Another original document compliant
to PDF version 1.4 whose signature is successfully verified by “Nuance Power PDF
Standard” could be found and used for its evaluation. However, the three macOS
applications were not able to verify that signature successfully and no other original
document containing a valid signature and being compliant to PDF version 1.4 could
be found. It was not possible to solve this problem during the evaluation. There-
fore, these applications could not be evaluated successfully as it was not possible to
determine whether a manipulation was detected.

For some applications updates were released during the evaluation. These updates
were applied at the end to evaluate whether the latest versions are still vulnerable
to the identified attacks. However, the unsuccessful attack vectors were not eval-
uated for the updated versions. The results of the re-evaluation are described in
Section 5.3.4.

5.2 Testing Environment

The testing environment consists of two virtual machines (VM) and a MacBook:
The first VM is based on the 64-bit EDU version of Windows 10 with the latest
updates installed on 18.08.2018. The second VM uses the 64-bit version of Xubuntu
18.04.1 LTS as the operating system and was updates to the latest available software
on 19.08.2018. The MacBook uses macOS High Sierra in version 10.13.6 updated
to the latest available updates on 22.08.2018. In both VMs and on the MacBook
different PDF processing applications which are in scope of this thesis and available
for the corresponding operating system are installed in their latest versions available
at the beginning of the evaluation®.

3The Linux applications were installed from the official Ubuntu software repository if available; it
is possible that newer versions are available directly at the vendor’s websites.

5.2 Testing Environment 39

The decision which applications are in the scope for this thesis was based on the
following criteria:

e The application must be capable of processing PDF files.

e The application must support the validation of digital signatures and state the
result of the validation to the user at least on one Ul-layer.

e The application must be available at no charge - either as a free or a in terms
of time-limited use or features constrained version.

As mentioned before, all applications which were found during the first phase of
this thesis and fulfill the criteria defined above were evaluated in their latest ver-
sion. Additionally, older versions of certain applications were added to the eval-
uation, as well: “Adobe Reader 9” for Linux was evaluated because it is the last
version of “Adobe Reader” which was developed for Linux. “Adobe Reader XI”
for Windows and macOS, “PDF Studio 12 Pro” for Windows, Linux and macOS
and “Soda PDF” for Windows were added to the evaluation because they are the
common predecessors of “Adobe Acrobat Reader DC”, “PDF Studio Viewer 2018”
and “Soda PDF Desktop”. This results in a total of 34 applications - 21 applications
for Windows, 5 applications for Linux and 8 applications for macOS. The list of
all processing applications and the corresponding evaluated version is depicted in
Table 5.2.

In the beginning the evaluation was conducted without establishing a trust relation-
ship between the certificate used to sign the original document and the applications
evaluated. After the first two parts of the evaluation were finished, this trust re-
lationship was established to ensure that the identified attacks are also successful
in a real-world environment* and to be compliant to the attacker model defined in
Section 2.3. The steps needed to establish this trust relationship are described in
Appendix A.2 for every application. However, during this thesis it was not accom-
plished to establish this trust relationship for all applications. For the following
applications no trust relationship could be established:

e “Expert PDF Reader”: The application seems to trust any certificate in gen-
eral. It does not show any information regarding the validity of the signer’s
certificate.

o “LibreOffice” (Linux and macOS): While the Windows version seems to use
the system’s certificate store to validate the signer’s certificate, the Linux and
macOS versions seem to ignore certificates manually added to the system’s
certificate store. Other options to establish the trust relationship were not
found.

“We assume that the signer’s certificate should be trusted by the processing application in a
real-life environment.

40 5 Evaluation

e “PDF-XChange Editor”: The application seems to trust any certificate in
general. It does not show any information regarding the validity of the signer’s
certificate.

e “PDF-XChange Viewer”: The application seems to trust any certificate in
general. It does not show any information regarding the validity of the signer’s
certificate.

e “Perfect PDF Reader”: The application seems to trust any certificate in gen-
eral. It does not show any information regarding the validity of the signer’s
certificate.

For the last part of the evaluation the trust relationship was not invalidated, except
for “LibreOffice” (Windows), “Nitro Pro” and “Nitro Reader” because these appli-
cations showed different behaviors depending on the trust relationship during the
second part of the evaluation.

During the evaluation some applications received updates on different operating
systems. Attacks which have been successful before these updates were evaluated
again with the new version of the corresponding application between 10.11.2018
and 12.11.2018. Unsuccessful manipulations and attacks were not evaluated again
for the new versions due to the limited time of this thesis. The results of the
re-evaluation are presented in Section 5.3. The affected applications are listed in
Table 5.3.

OSs Application Updated Version

Windows, macOS
Windows, macOS
Windows

Windows, Linux, macOS
Windows, Linux, macOS
Windows

Windows

macOS

Windows

macOS

Windows, Linux, macOS
Windows

Windows

Windows

Adobe Acrobat Reader DC
Adobe Reader XI

Foxit Reader

LibreOffice

Master PDF Editor
Nuance Power PDF Standard
PDF Architect 6

PDF Editor 6 Pro
PDFelement 6 Pro
PDFelement 6 Pro

PDF Studio Viewer 2018
PDF-XChange Editor
Perfect PDF Reader

Soda PDF Desktop

2019.008.20080
11.0.23°
9.3.0.10826
6.1.3.2

5.1.68

3.0.0.30
6.1.24.1862
6.7.6.3400
6.8.4.3921
6.7.6.3399
2018.2.0

7.0 (Build 327.1)
13.1.5 (134.4)
10.2.16.1217

Table 5.3: List of applications which received updates during the evaluation and
their new versions for different operating systems.

5This update was released on 14.11.2017 as an update package and not as a regular installation
package (see https://www.adobe.com/devnet-docs/acrobatetk/tools/ReleaseNotes/). Due
to this it was overlooked during the initial installation of the testing environment.

https://www.adobe.com/devnet-docs/acrobatetk/tools/ReleaseNotes/

5.3 Results 41

5.3 Results

In the following sections, the results of the evaluation for the three attack classes
are explained. A table containing all results for each attack class can be found in
Appendix A.5.

5.3.1 Signature Exclusion

Based on the 24 manipulations described in Section 3.1 24 test files were created
using Python scripts (see Chapter 4 for details). Every test file was opened using
every application listed in Table 5.2. The information regarding the signature and
its validity displayed on the different Ul-layers was compared to the information
displayed when the original document was opened.

It was possible to execute successful attacks against 4 applications for Windows and
2 applications for macOS. The other 28 applications are not vulnerable to any of
the evaluated 24 manipulations. They either discover the manipulation and display
a message stating that the signature is invalid, display an error message or crash
when a manipulated document is opened.

In the following, the vulnerable applications and the successful manipulations are
described:

Adobe Acrobat Reader DC (Windows, macOS): This application is vulnerable to
two manipulations of the /ByteRange entry of the signature dictionary. Both
replacing its value with the null object and removing the whole entry results
in a successful attack. After applying one of these manipulations, it is possible
to add new content or update the present content of the document using
a regular incremental update. For the evaluation the string object (object
4 0) displayed on the single page of the document was updated using the
incremental update depicted in Listing 5.8. Although the signature should
be invalid after applying the incremental update Adobe Acrobat Reader DC
displays “Signed and all signatures are valid” in Ul-layer 1. In Ul-layer 2 the
behavior differs depending on which Ul options are used: If the user opens
the signature panel the application again states that the “Signature is valid”
and the “Document has not been modified sind this signature was applied”
(see Figure 5.4). However, if the user clicks on the visible appearance of the
signature placed at the top of the page an error message is displayed stating
that there was an “Error during the signature verification”, the “Signature
contains incorrect, unrecognized, corrupted or suspicious data” and that an
“Unexpected byte range value defining scope of signed data” has been detected
(see Figure 5.5). This means the attack is considered successful on Ul-layer 1
and partly successful on Ul-layer 2.

42 5 Evaluation

"L 12 document_signed_visible_manipulateByteRange_replaceValugWithMull_ExchangedConten2t.pdf - Adobe Acrobat Reader DC
File Edit View Window Help

Home Tools 12 document_signe... % document_signed_.. %

m &8 2 Q R ® O w - BB @

é& Signed and all signatures are valid.

@ Signatures »
@ [=]+ Validate Al

m o % Rew. 1: Signed by Viadislav Mladenov <vladislav.mladenov@rub.de>

Signature is valid: Hello Attacker!
Document has not been medified since this signature was applied
Signer's identity is valid
Signing time is from the clock on the signer's computer.
~ Signature Details

Reason: Security

Location: Bochum

Figure 5.4: Ul-layer 1 (blue banner) and Ul-layer 2 (signature panel on the left) of
Adobe Acrobat Reader DC when a manipulated document results in a
successful attack.

Error Information

Error during signature verification.

Signature contains incorrect, unrecognized, corrupted or suspicious data.
Details: Unexpected byte range values defining scope of signed data.

Figure 5.5: Error message displayed when the visible appearance of a signature in a
manipulated document is clicked in Adobe Acrobat Reader DC.

Adobe Reader XI (Windows, macOS): The manipulations which can be used for
successful attacks against this application are the same as for Adobe Acrobat
Reader DC. Also the information displayed on Ul-layers 1 and 2 is identical
to the information displayed by Adobe Acrobat Reader DC.

PDF Editor 6 Pro (Windows): It was possible to bypass the signature verifica-
tion for this application using all 5 evaluated manipulations regarding the
/Contents entry of the signature dictionary. After the /Contents entry is
manipulated in one of the presented ways, the string object displayed on the
page of the document can be updated in a similar manner as depicted in List-
ing 5.8. However, the attacks were only successful on Ul-layer 1: While the
application displays a banner stating that the document is “Signed and all
signatures are valid” when the manipulated file is opened (see Figure 5.6), it

5.3 Results 43

informs the user that the “Signature is INVALID” and “The document has
been altered or corrupted sind the Signature was applied” when the UI op-
tion “Validate All Signatures” is executed (see Figure 5.7). Additionally, a
click on the visible appearance of the signature results in a dialog to sign the
document instead of a windows stating information regarding the present sig-
nature. However, the attack could only be successfully evaluated for Windows.
The macOS version of the application states that the “Signature is INVALID”
and “contains incorrect, unrecognized, corrupted or supiscious data” even for
the original document. Due to this behavior it was not possible to determine
whether a manipulation was detected or not. It was not possible to solve this
problem during the evaluation.

File ome Jiew Comme Edit Page Form Protect 2lp

& select D @ |_—.§. E‘; [(E:) = Buy Now

b Hand > .
Mark for Search & Apply Password Password Sign Place Validate Qg Register

E/‘Edii Redaction Redact Redactions Management Document Signature All Signatures

Al 1 document sig..ent2 X

|—|:| @ Signed and all signatures are valid. Jump to Signature Disable Highlight X
N
=l
g
Hello Attacker!
Q

Figure 5.6: Ul-layer 1 (green banner) of PDF Editor 6 Pro when a manipulated
document results in a successful attack.

Validate All Signatures

Signed and all signatures are valid.

= Signed By Unknown
B & Signature is INVALID.
The document has been altered or corrupted since the Sig
The signer's identity is unknown because it has not been i
Signing time is from the clock on the signer's computer.

Figure 5.7: Ul-layer 2 (“Validate All Signatures” option) of PDF Editor 6 Pro when
a manipulated document which results in a successful attack on Ul-layer
1 is opened.

44 5 FEvaluation

PDFelement 6 Pro (Windows): The manipulations which can be used for success-
ful attacks against this application are the same as for PDF Editor 6 Pro. Also
the information displayed in Ul-layers 1 and 2 is identical to the information
displayed by PDF Editor 6 Pro.% Again, the attack is only successful for Win-
dows as the macOS version of the application behaves in the same way as the
macOS version of PDF Editor 6 Pro.

4 0 obj

<< /Length 48 >>
stream

BT

/F1 12 Tf

100 700 Td

(Hello Attacker!) Tj
ET

endstream

endobj

xref

01

0000000000 65535 £
41

0000022985 00000 n
trailer

<<

/Root 1 O R

/ID [<1FDC264C24377F037DC7C2587F9CIAA8> <FD7ABFD8D7817F76AF29426E3A75B15A>]
/Size 15

/Prev 22624

>>

startxref

23083

WHEQF

Listing 5.8: Incremental update which updates the string object (4 0) to display
“Hello Attacker!” instead of “Hello World!”.

5.3.2 Incremental Update Abuse

In contrast to the evaluation of the Signature Exclusion attacks this attack class was
evaluated completely manually without the help of any scripts. Each application
listed in Table 5.2 was evaluated independently using the following adaptive proce-
dure: The original file was appended with a manipulated incremental update based
on one of the four variants described in Section 3.2. Afterwards the manipulated file
was opened and depending on the behavior of the application and the information
displayed in Ul-layers 1 and 2 the manipulated file was adjusted. These steps were

5During the evaluation, the suspicion arose that the two applications share the same code base.
This suspicion is based on the (except for the color) identical UI and identical behavior for all
test cases. However, this suspicion could not be confirmed, which is why the evaluation was
always conducted for both applications independently.

5.3 Results 45

repeated for all four variants until either a successful attack was found or the conclu-
sion was drawn that the application is not vulnerable to attacks based on the four
variants. Later, every application was evaluated again using all manipulated files
which led to a successful attack for at least one application. If no successful attack
could be found for any of the four variants the application was considered to be not
vulnerable against Incremental Update Abuse attacks.

Again, the classification if an attack is successful or not was conducted based on
the comparison between the information displayed regarding the signature and its
validity on the different Ul-layers when the original and the manipulated document
were opened.

During the evaluation it was possible to execute successful attacks against more than
half of the 34 application in the scope of this thesis. 11 applications for Windows, 4
applications for Linux and 3 applications for macOS - a total of 19 applications - was
vulnerable to at least one Incremental Update Abuse variant. However, for three of
the vulnerable applications certain limitations apply. These limitations are described
below.

Suprisingly, all incremental update variants could be used for successful attacks
against multiple applications. Figure 5.9 shows the distribution of vulnerable ap-
plications among the four variants. Variant 3 was the most successful one. It
was used to successfully attack all vulnerable applications except one. Variant 2
could be used for successful attacks against 14 applications, variant 4 for success-
ful attacks against 11 applications and variant 1 for successful attacks against 8
applications.

20
18
16

18
14
14
12 11
l I
8

Variant 1 Variant 2 Variant 3 Variant 4

o

Vulnerable Applications

o N b O

Figure 5.9: Distribution of applications vulnerable to attacks based on the different
incremental update variants.

Note: The attacks for applications marked with an asterisk were not created by the
author of this thesis but his advisors. Their results are presented here for the sake
of a complete and comprehensive evaluation.

46 5 Evaluation

In the following, all successful attacks are presented in detail sorted according to the
incremental update variant used:

Attacks based on variant 1:

Nuance Power PDF Standard: This application could be attacked using a PDF file
manipulated in the same way as the one used to attack PDF Studio 12 Pro.”
Before establishing the trust relationship between the signer’s certificate and
the application Ul-layer 1 displayed a small question mark next to the visible
signature and a banner stating that the document “is signed” but “At least
one signature has problems”. Ul-layer 2 stated that the signature “validity
is unknown” and the “revision of the document has not been modified since
the signature was applied”. Both Ul-layers change after the trust relation-
ship is established: Ul-layer 1 displays a small purple check mark instead of
the question mark and the banner states that the document “is signed” and
“All signatures are valid”. Ul-layer 2 states that the signature “is valid” while
still informing the user that the revision of the document has not been modi-
fied. This behavior is identical to the behavior when the original document is
opened. Therefore, the attack is successful on both Ul-layers.

*PDF Studio 12 Pro (Windows, Linux, macOS): This attack is the simplest one
of all successful Incremental Update Abuse attacks. Manipulated objects are
added to the original file in order to change the displayed content of the doc-
ument. Afterwards, a new comment line (starting with %) containing the
keyword startxref is appended at the end. These two manipulations are
sufficient to successfully attack this application. Before establishing the trust
relationship between the signer’s certificate and the application Ul-layer 1 dis-
played a question mark next to the visible signature. Ul-layer 2 stated that the
signature “validity is UNKNOWN” and the “document has not been modified
since the signature was applied”. Both Ul-layers change after the trust rela-
tionship is established: Ul-layer 1 displays a green check mark instead of the
question mark and Ul-layer 2 states that the signature “is VALID” while still
informing the user that the document has not been modified. This behavior
is identical to the behavior when the original document is opened. Therefore,
the attack is successful on both Ul-layers.

*PDF Studio Viewer 2018 (Windows, Linux, macOS): This application could be
attacked using the same manipulated PDF file as PDF Studio 12 Pro and
showed the exact same behavior on both Ul-layers as PDF Studio 12 Pro.
Therefore, the attack is successful on both Ul-layers.

" As described in Section 5.1 Nuance Power PDF Standard states that the signature present in the
unaltered original document which was used for the evaluation is invalid. Therefore, another
original document had to be used as the base for manipulated files.

5.3 Results 47

Perfect PDF 10 Premium: This application could be attacked using the same ma-
nipulated PDF file as PDF Studio 12 Pro. Its behavior is similar to the
behavior described for the attack based on variant 2. Therefore, the attack is
successful on both Ul-layers.

Attacks based on variant 2:

Master PDF Editor (Windows, Linux): This application could be attacked using
the same manipulated PDF files as PDF Editor 6 Pro and Perfect PDF 10
Premium. When the manipulated document is opened without establishing
a trust relationship between the signer’s certificate and the application the
user is informed on Ul-layer 2 that the “Signature validity is UNKNOWN”
but the document “has not been changed since the signatures was applied”.
This information is similar to the information displayed when the original
document is opened. After the trust relationship has been established UI-
layer 2 states that the “Signature is VALID” and the document “has not been
changed since the signatures was applied”. Ul-layer 1 does not contain any
information related to the signature’s validity independently of the opened file.
It only contains a banner stating that the “document contains interactive form
fields”. Therefore, the attack is successful on Ul-layer 2. However, the attack
could only be successfully evaluated for Windows and Linux. The macOS
version of the application states that the present signature is invalid and the
document has been modified after the signature was added or is damaged
even for the original document. Due to this behavior it was not possible to
determine whether a manipulation was detected. It was not possible to solve
this problem during the evaluation.

Nitro Pro: This application could be attacked using the same manipulated PDF
files as PDF Editor 6 Pro and Perfect PDF 10 Premium. However the fol-
lowing limitations apply: When the manipulated document is opened before
the trust relationship between the signer’s certificate and the application is
established Ul-layer 1 shows a question mark next to the visible signature.
Ul-layer 2 informs the user that the signature “validity is Unknown” and the
“document has not changed since it was signed, or only contains changes that
are permitted by a previous signer”. This information is identical to the infor-
mation displayed when the original file is opened. After the trust relationship
is established the manipulation is detected. On Ul-layer 1 the question mark
is replaced by a green check mark and a warning symbol (yellow triangle with
an exclamation mark). Ul-layer 2 now states that the “Signature is Valid”,
but also contains a note that the document was changed after the signature
was applied: “The revision of the document that was covered by this signa-
ture has not been altered; however there have been subsequent changes to the
document”. Additionally, in both cases the button “View Signed Version...”
on Ul-layer 2 opens a new tab in the application which shows the original

48 5 Evaluation

content of the document. Despite the attacker model specifying that viewer
applications trust the signer’s certificate the attack prior to establishing this
trust relationship is still classified as limited successful.

Nitro Reader: This application could be attacked using the same manipulated PDF
files as PDF Editor 6 Pro and Perfect PDF 10 Premium. It showed the ex-
act same behavior on both Ul-layers with the same limitations as Nitro Pro.
Therefore, the attack is considered to be only limitedly successful.

Nuance Power PDF Standard: This application could be attacked using PDF files
manipulated in the same way as the ones used to attack PDF Editor 6 Pro and
Perfect PDF 10 Premium.® Its behavior is similar to the behavior described
for the attack based on variant 1. Therefore, the attack is successful on both
Ul-layers.

PDF Editor 6 Pro (Windows): The attack created for PDF Editor 6 Pro is based
on variant 2 which means adding the manipulated objects and a trailer to
the original document is sufficient. The added trailer can be a modified copy
of the last trailer of the original document. The only modification needed is
to replace the value of the startxref entry with any value higher than the
original one which references the last XRef section of the original file. When the
manipulated file is opened without establishing the trust relationship between
the application and the signer’s certificate Ul-layer 1 states that “At least
one signature is invalid” while Ul-layer 2 names the validity of the signature
“UNKNOWN” and clearly states that the document “has not been modified
since the signature was applied”. The application shows the same behavior
when the original document is opened. After the trust relationship has been
established the application shows coherent information on both Ul-layers: Ul-
layer 1 states that the document is “Signed and all signatures are valid” and Ul-
layer 2 states that the “Signature is VALID” and the document “has not been
modified since the signature was applied”. Therefore, the attack is successful
on both Ul-layers. However, the attack could only be successfully evaluated
for Windows. The macOS version of the application states that the “Signature
is INVALID” and “contains incorrect, unrecognized, corrupted or supiscious
data” even for the original document. Due to this behavior it was not possible
to determine whether a manipulation was detected. It was not possible to solve
this problem during the evaluation. Note: This application could be attacked
using the same manipulated PDF file as Perfect PDF 10 Premium, as well.

PDFelement 6 Pro (Windows): This application could be attacked using the same
manipulated PDF file as PDF Editor 6 Pro and showed the exact same behav-
ior on both Ul-layers as PDF Editor 6 Pro. Therefore, the attack is successful

8 As described in Section 5.1 Nuance Power PDF Standard states that the signature present in the
unaltered original document which was used for the evaluation is invalid. Therefore, another
original document had to be used as the base for manipulated files.

5.3 Results 49

on both Ul-layers. Again, the attack is only successful for Windows as the ma-
cOS version of the application behaves in the same way as the macOS version
of PDF Editor 6 Pro.

PDF Studio 12 Pro (Windows, Linux, macOS): This application could be attack-
ed using the same manipulated PDF files as PDF Editor 6 Pro and Perfect
PDF 10 Premium. Its behavior is similar to the behavior described for the
attack based on variant 1. Therefore, the attack is successful on both Ul-layers.

PDF Studio Viewer 2018 (Windows, Linux, macOS): This application could be
attacked using the same manipulated PDF files as PDF Editor 6 Pro and Per-
fect PDF 10 Premium. It showed the exact same behavior on both Ul-layers
as PDF Studio 12 Pro. Therefore, the attack is successful on both Ul-layers.

Perfect PDF 10 Premium: The attack against Perfect PDF 10 Premium is based
on variant 2 of the manipulated incremental updates. In addition to the ma-
nipulated objects changing the visible content of the document, a new trailer
must be appended to the end of the original file. This trailer can be a mod-
ified copy of the last trailer of the original file. However, it must contain a
startxref entry whose value must not be the actual byte offset of the last
XRef section but a value higher by at least 7. During this thesis no explana-
tion could be found why a smaller increase of the value is not sufficient. When
the manipulated document is opened before the trust relationship between the
signer’s certificate and the application is established Ul-layer 1 only shows a
question mark next to the visible signature. Ul-layer 2 states that the signa-
ture status is “Valid, signer identity is unknown” and the document “has not
been modified since this signature was applied”. After establishing the trust
relationship, Ul-layer 1 shows a green check mark instead of the question mark
and on Ul-layer 2 the signature status has changed to “Valid, trusted signer
identity or issued by CA” while the note that the document has not been
modified is still present. Therefore, the attack is successful on both Ul-layers.

Attacks based on variant 3:

LibreOffice (Windows, Linux, macOS): The attack for this application is based on
incremental update variant 3. This means the incremental update consists
of the manipulated objects, a new empty XRef section and a trailer. The
empty XRef section contains only the keyword xref. The startxref value of
the trailer must be the correct byte offset of this new XRef section and the
trailer dictionary does not need to contain anything except the /Root entry
referencing the document catalog. The following limitation applies to this at-
tack: When the manipulated document is opened before the trust relationship
between the signer’s certificate and the application is established Ul-layer 1
shows a yellow banner stating that the “signature is OK, but the certificate
could not be validated” and Ul-layer 2 states that the certificate “could not

50 5 Evaluation

be validated”. This information is identical to the information displayed when
the original document is opened. After establishing the trust relationship® the
application’s behavior is different for the manipulated document than for the
original one: Opening the original document results in a new blue banner on
Ul-layer 1 stating that “This document is digitally signed and the signature
is valid” while opening the manipulated one results in a new yellow banner
stating that the “signature is OK, but the document is only partially signed”.
This means after establishing the trust relationship the application detects
that the document has been updated after the signature was applied. Despite
the attacker model specifying that viewer applications trust the signer’s cer-
tificate the attack prior to establishing this trust relationship is still classified
as limited successful. Note: This application could be attacked using the same
manipulated PDF' file as Perfect PDF Reader, as well. However, the same
limitation applies.

Master PDF Editor (Windows, Linux): This application could be attacked using
the same manipulated PDF files as LibreOffice and Perfect PDF Reader. Its
behavior is similar to the behavior described for the attack based on variant 2.
Therefore, the attack is successful on Ul-layer 2. The attack is only successful
for Windows and Linux; the macOS version of the application shows the same
behavior as described for the attack based on variant 2.

Nitro Pro: This application could be attacked using the same manipulated PDF
files as LibreOffice and Perfect PDF Reader. Its behavior is similar to the
behavior described for the attack based on variant 2. This means the same
limitations apply for this attack, too. When the trust relationship between the
application and the signer’s certificate is established the application detects
that the document has been updated after the signature was applied. Due to
these limitations the attack is considered to be only limitedly successful.

Nitro Reader: This application could be attacked using the same manipulated PDF
files as LibreOffice and Perfect PDF Reader. It showed the exact same behavior
on both Ul-layers with the same limitations as Nitro Pro. Therefore, the attack
is considered to be only limitedly successful.

Nuance Power PDF Standard: This application could be attacked using PDF files
manipulated in the same way as the ones used to attack LibreOffice and Perfect
PDF Reader.'? Its behavior is similar to the behavior described for the attack
based on variant 1. Therefore, the attack is successful on both Ul-layers.

9As described in Section 5.2 it was not achieved to establish the trust relationship between the
signer’s certificate and the Linux or macOS version of LibreOffice during this thesis. Therefore,
no statement can be made as to whether these versions show the same behavior as the Windows
version when the trust relationship is established.

10 As described in Section 5.1 Nuance Power PDF Standard states that the signature present in the
unaltered original document which was used for the evaluation is invalid. Therefore, another
original document had to be used as the base for manipulated files.

5.3 Results 51

PDF Editor 6 Pro (Windows): This application could be attacked using the same
manipulated PDF files as LibreOffice and Perfect PDF Reader. Its behavior is
similar to the behavior described for the attack based on variant 2. Therefore,
the attack is successful on both Ul-layers. The attack is only successful for
Windows; the macOS version of the application shows the same behavior as
described for the attack based on variant 2.

PDFelement 6 Pro (Windows): This application could be attacked using the same
manipulated PDF files as LibreOffice and Perfect PDF Reader. It showed the
exact same behavior on both Ul-layers as PDF Editor 6 Pro. Therefore, the
attack is successful on both Ul-layers. Again, the attack is only successful for
Windows as the macOS version of the application behaves in the same way as
the macOS version of PDF Editor 6 Pro.

PDF Studio 12 Pro (Windows, Linux, macOS): This application could be attack-
ed using the same manipulated PDF files as LibreOffice and Perfect PDF
Reader. Its behavior is similar to the behavior described for the attack based
on variant 1. Therefore, the attack is successful on both Ul-layers.

PDF Studio Viewer 2018 (Windows, Linux, macOS): This application could be
attacked using the same manipulated PDF files as LibreOffice and Perfect
PDF Reader. It showed the exact same behavior on both Ul-layers as PDF
Studio 12 Pro. Therefore, the attack is successful on both Ul-layers.

Perfect PDF 10 Premium: This application could be attacked using the same ma-
nipulated PDF file as Perfect PDF Reader. Its behavior is similar to the
behavior described for the attack based on variant 2. Therefore, the attack is
successful on both Ul-layers.

Perfect PDF Reader: While this attack was also based on variant 3 it differs strong-
ly from the one against LibreOffice: The incremental update also includes
adding the manipulated objects, a new XRef section and a trailer to the orig-
inal file. However, the XRef section must not be empty but contain entries
for all manipulated objects and all objects added to the file as a part of the
signature. When the original document is opened Ul-layer 1 contains a green
badge containing a checkmark next to the visible signature. Ul-layer 2 states
that the signature is “Giiltig” and shows the same badge. Opening the manip-
ulated document results in different information presented to the user: A tiny
yellow warning symbol is added to the green badge on both Ul-layers. The in-
formation on Ul-layer 2 states that the signature is “Giiltig fiir unterschriebene
Version”. The comparison of Ul-layer 2 for the original and manipulated doc-
ument is shown in Figure 5.10. Despite this difference in behavior the attack
is classified as successful on both Ul-layers. This classification is justified on
the missing option to view the signed version of the document and the minor
difference between the displayed badges. The comparison of the two badges

92 5 Evaluation

(see Figure 5.11) shows that the tiny warning symbol can easily be overlooked
by the user.

Note: As described in Section 5.2 it was not necessary to establish a trust
relationship between the signer’s certificate and the application because the ap-
plication seems to trust any certificate in general.

Unterschriften X Unterschriften X

Vladislav Mladenov Vladislav Mladenov
@ Giltig Giltig fur unterschriebene
09.08.2018 10:21 GEETIT

09.08.2018 10:21
Unterschriftinformationen

. Unterschriftinformationen
Grund: Security

Ort: Bochum Grund: Security

. . . Ort: Bochum
Zertifikatsinformationen

) Zertifikatsinformationen
Aussteller: Viadislav Mladenov

Giiltig ab: 06.11.2017 14:51 Aussteller: Vladislav Mladenov
Giltig ab: 06.11.2017 14:51
Galtig bis: 04.11.2027 14:51

Giltig bis: 04.11.2027 14:51

Figure 5.10: Comparison of Ul-layer 2 of Perfect PDF Reader when the unaltered
original document (left) and the manipulated document (right) are
opened.

Figure 5.11: Comparison of the badges displayed on both Ul-layers of Perfect PDF
Reader when the original (left) and the manipulated document (right)
are opened.

Attacks based on variant 4:

*Foxit Reader: This application could be successfully attacked by a manipulated
file appended using incremental update variant 4. This means the manip-
ulated objects added to the end of the original file include a copy of some
signature related objects from the original document (field dictionary of the
signature form field and signature dictionary). Ul-layer 1 does not show any

5.3 Results 53

information regarding the signature or its validity when the original or manip-
ulated document is opened. Ul-layer 2 however, states that the signature is
“unknown” and the document “has not been modified since this signature was
applied” before the trust relationship between the signer’s certificate and the
application is established. After establishing the trust relationship, Ul-layer 2
states that signature is “valid” and still informs the user that the document
has not been modified. Again, this behavior is identical for the manipulated
and the original document. Therefore, the attack is successful on Ul-layer 2.

Master PDF Editor (Windows, Linux): This application could be attacked using
the same manipulated PDF file as Foxit Reader. Its behavior is similar to the
behavior described for the attack based on variant 2. Therefore, the attack is
successful on Ul-layer 2. The attack is only successful for Windows and Linux;
the macOS version of the application shows the same behavior as described
for the attack based on variant 2.

PDF Editor 6 Pro (Windows): This application could be attacked using the same
manipulated PDF file as Foxit Reader. Its behavior is similar to the behavior
described for the attack based on variant 2. Therefore, the attack is successful
on both Ul-layers. The attack is only successful for Windows; the macOS
version of the application shows the same behavior as described for the attack
based on variant 2.

PDFelement 6 Pro (Windows): This application could be attacked using the same
manipulated PDF file as Foxit Reader. It showed the exact same behavior on
both Ul-layers as PDF Editor 6 Pro. Therefore, the attack is successful on
both Ul-layers. Again, the attack is only successful for Windows as the macOS
version of the application behaves in the same way as the macOS version of
PDF Editor 6 Pro.

PDF Studio 12 Pro (Windows, Linux, macOS): This application could be attack-
ed using the same manipulated PDF file as Foxit Reader. Its behavior is similar
to the behavior described for the attack based on variant 1. Therefore, the
attack is successful on both Ul-layers.

PDF Studio Viewer 2018 (Windows, Linux, macOS): This application could be
attacked using the same manipulated PDF file as Foxit Reader. It showed
the exact same behavior on both Ul-layers as PDF Studio 12 Pro. Therefore,
the attack is successful on both Ul-layers.

5.3.3 Signature Wrapping

The evaluation of the Signature Wrapping attack class was divided into two parts
because this attack class is based on two different approaches. The first approach
which involves placing manipulated objects in between the two signed byte ranges

54 5 Evaluation

of the original document was evaluated using an adaptive procedure similar to the
Incremental Update Abuse attack class. The original file was manipulated by adding
objects and a new XRef section in between the two signed byte ranges, adjusting
the /ByteRange entry of the signature dictionary accordingly and adding padding
if necessary.!! Afterwards, the file was opened in the currently tested application.
If the attack was not successful further changes (e.g., adding a trailer behind the
newly added XRef section) were made adaptively. This process was repeated for each
application until a successful attack was found or the application was considered to
be not vulnerable to this Signature Wrapping approach.

The second Signature Wrapping approach was evaluated differently. Similar to the
Signature Exclusion attack class general test files were created using different manip-
ulations and different wrappings around the signed data. The signed data consists
of the two signed byte ranges which were connected and placed at the end of the
file. The 41 test files based on the manipulations described in Table 3.4 were opened
in all applications to check whether they are vulnerable to the specific manipula-
tion.

The classification if an attack is successful or not was again conducted based on
the comparison between the information displayed regarding the signature and its
validity on the different Ul-layers when the original and the manipulated document
were opened.

Using the first approach it was possible to successfully attack 21 applications. One
single manipulated file initially created during the evaluation of Nitro Pro led to suc-
cessful attacks for 18 applications without any adjustments. The second approach
could successfully be used for attacks against 18 applications. Three test files turned
out to be the most universal ones: Test file 1 which includes no wrapping around
the signed data placed at the end of the file could be used for attacks against 16
applications. The two files 36 and 41 which are both variants of test file 1 and do
not include any wrapping either could even be used to successfully attack 18 and 17
applications. In contrast to test file 1 they do not contain a /ByteRange entry spec-
ifying a first byte range which has the size 0. The two applications PDF-XChange
Editor and Perfect PDF Reader are vulnerable to test files 36 and 41 but not to test
file 1 which means they do not accept byte ranges whose size is 0. Figure 5.12 shows
the distribution of vulnerable applications among the different test files. However,
for all applications which are vulnerable to this Signature Wrapping approach the
first approach also led to successful attacks.

Note: The attacks for applications marked with an asterisk were not created by the
author of this thesis but his advisors. Their results are presented here for the sake
of a complete and comprehensive evaluation.

1Padding might by necessary to ensure that the startxref value of the last trailer points to the
new XRef section.

5.3 Results 55

=N
o O

l//

PR e
N Ao

11111111
101010101010 101010101010101010101010101010101010 10101010

1234567 891011121314151617181920212223242526272829303132333435363738394041
Test File

Vulnerable Applications
[
o

o N M O

Figure 5.12: Distribution of applications vulnerable to attacks based on the test files
from the second Signature Wrapping approach.

In the following, all successful attacks achieved with the first Signature Wrapping
approach are presented in detail:

eXpert PDF 12 Ultimate: This application could be attacked using the same ma-
nipulated PDF files as Nitro Pro and Soda PDF Desktop. When one of the
manipulated files is opened the application displays the manipulated content.
While Ul-layer 1 does not contain any information regarding the signature Ul-
layer 2 states that the “Signature is Valid” and “After adding the signature,
the document has not been modified”. This behavior is similar to the behavior
when the original document is opened. Therefore, the attack is successful on
Ul-layer 2.

Expert PDF Reader: This application could be attacked using the same manipu-
lated PDF file as Nitro Pro. When the manipulated file is opened the appli-
cation displays the manipulated content. While Ul-layer 1 does not contain
any information regarding the signature’s validity Ul-layer 2 states that the
“Signature is VALID” and “The revision of the document that was covered by
this signature has not been altered”. This behavior is similar to the behavior
when the original document is opened. Therefore, the attack is successful on
Ul-layer 2.

*Foxit Reader: The following manipulations were applied to the original document
to successfully attack Foxit Reader: First, a copy of the /ByteRange entry was
added behind the /Contents entry of the signature dictionary. Afterwards, the
signature dictionary was closed by adding » endobj. An updated version of
the stream displayed on the single page of the document was added behind the
closed signature dictionary to manipulate the visible content of the document.
Then, a new XRef section was placed behind this object. The XRef section

o6

5 FEvaluation

must contain correct XRef entries for the newly added object as well as the
objects contained in the second signed byte range. Otherwise the application
is not able to locate these objects and fails to validate the present signature.
To ensure that the new XRef section starts at the byte offset specified by
the startxref value of the last trailer (which is part of the signed data and
cannot be adjusted without invalidating the signature) whitespaces are used as
padding in front of the XRef section. Finally, the third value of the /ByteRange
entry’s array is replaced with the new starting byte offset of the second signed
byte range. When the manipulated file is opened the application displays
the manipulated content. While Ul-layer 1 does not contain any information
regarding the signature Ul-layer 2 states that the “Signature is VALID” and
“The document has not been modified since the signature was applied”. This
behavior is similar to the behavior when the original document is opened.
Therefore, the attack is successful on Ul-layer 2.

Nitro Pro: The following manipulations were applied to the original document to

successfully attack Nitro Pro: First, a copy of the /ByteRange entry was added
behind the /Contents entry of the signature dictionary. Afterwards, the sig-
nature dictionary was closed by adding » endobj. An updated document
catalog, a new pages object, a new page object and a new stream were added
behind the closed signature dictionary to manipulate the visible content of the
document. Then, a new XRef section and a copy of the original file’s last
trailer were placed behind these objects. The copy of the trailer does not need
to contain more than the trailer dictionary. The XRef section must contain
correct XRef entries for the newly added objects as well as the objects con-
tained in the second signed byte range. Otherwise the application is not able
to locate these objects and fails to validate the present signature. To ensure
that the new XRef section starts at the byte offset specified by the startxref
value of the last trailer (which is part of the signed data and cannot be adjusted
without invalidating the signature) whitespaces are used as padding in front
of the XRef section. Finally, the third value of the /ByteRange entry’s array
is replaced with the new starting byte offset of the second signed byte range.
When the manipulated file is opened the application displays the manipulated
content. A green checkmark is displayed next to the visible signature on Ul-
layer 1 and the information on Ul-layer 2 states that the “Signature is Valid”
and “The document has not changed since it was signed, or only contains
changes that are permitted by a previous signer”. This behavior is similar to
the behavior when the original document is opened. Therefore, the attack is
successful on both Ul-layers.

Nitro Reader: This application could be attacked using the same manipulated PDF

file as Nitro Pro. It showed the exact same behavior on both Ul-layers as Nitro
Pro. Therefore, the attack is successful on both Ul-layers.

5.3 Results 57

Nuance Power PDF Standard: As described in Section 5.1 this application states
that the signature present in the unaltered original document which was used
for the evaluation is invalid. Therefore, another original document had to
be used as the base for manipulated files. Using this original document and
applying the following manipulations it was possible to attack the applica-
tion: The /ByteRange entry is in front of the /Contents entry in this original
document. Therefore, it is part of the first signed byte range and cannot be
manipulated using the first Signature Wrapping approach. However, adding a
second /ByteRange entry behind the /Contents entry’s value can be used to
overwrite the original /ByteRange entry. The second signed byte range of the
original document which starts with the /M entry behind the /Contents en-
try’s value must be placed at the end of the file and the manipulations must be
added in between the two signed byte ranges. First, a copy of the /M entry and
the closing » endobj of the signature dictionary must be placed behind the
newly added /ByteRange entry. Afterwards, an updated version of the orig-
inal page object and a new stream object referenced by this page object are
added to the file. These two objects manipulate the visible content of the doc-
ument. Finally, the third value of the newly added /ByteRange entry’s array
is replaced with the new starting byte offset of the second signed byte range.
When the manipulated file is opened the application displays the manipulated
content. A purple checkmark is displayed next to the visible signature on Ul-
layer 1 and the information on Ul-layer 2 states that the “Signature is valid”
and the “Document has not been modified since this signature was applied”.
This behavior is similar to the behavior when the original document is opened.
Therefore, the attack is successful on both Ul-layers.

PDF Architect 6: This application could be attacked using the same manipulated
PDF files as Nitro Pro and Soda PDF Desktop. It showed the exact same
behavior on both Ul-layers as eXpert PDF 12 Ultimate. Therefore, the attack
is successful on Ul-layer 2.

PDF Editor 6 Pro (Windows): This application could be attacked using the same
manipulated PDF file as Nitro Pro. When the manipulated file is opened the
application displays the manipulated content. A banner stating that the docu-
ment is “Signed and all signatures are valid” is displayed on Ul-layer 1 and the
information on Ul-layer 2 states that the “Signature is VALID” and “The doc-
ument has not been modified since the signature was applied”. This behavior
is similar to the behavior when the original document is opened. Therefore,
the attack is successful on both Ul-layers. However, the attack could only
be successfully evaluated for Windows. The macOS version of the application
states that the “Signature is INVALID” and “contains incorrect, unrecognized,
corrupted or supiscious data” even for the original document. Therefore, it was
not possible to determine whether a manipulation was detected. It was not
possible to solve this problem during the evaluation.

o8 5 Evaluation

PDFelement 6 Pro (Windows): This application could be attacked using the same
manipulated PDF file as Nitro Pro. It showed the exact same behavior on
both Ul-layers as PDF Editor 6 Pro. Therefore, the attack is successful on
both Ul-layers. Again, the attack is only successful for Windows as the macOS
version of the application behaves in the same way as the macOS version of
PDF Editor 6 Pro.

PDF Studio 12 Pro (Windows, Linux, macOS): This application could be attack-
ed using the same manipulated PDF file as Nitro Pro. When the manipulated
file is opened the application displays the manipulated content. A green check-
mark is displayed next to the visible signature on Ul-layer 1 and the informa-
tion on Ul-layer 2 states that the “Signature is VALID” and “The document
has not been modified since the signature was applied”. This behavior is sim-
ilar to the behavior when the original document is opened. Therefore, the
attack is successful on both Ul-layers.

PDF Studio Viewer 2018 (Windows, Linux, macOS): This application could be
attacked using the same manipulated PDF file as Nitro Pro. It showed the
exact same behavior on both Ul-layers as PDF Studio 12 Pro. Therefore, the
attack is successful on both Ul-layers.

PDF-XChange Editor: This application could be attacked using the same manipu-
lated PDF file as Nitro Pro. When the manipulated file is opened the appli-
cation displays the manipulated content. While Ul-layer 1 does not contain
any information regarding the signature’s validity Ul-layer 2 states that the
“Signature is VALID” and “The document was not modified since the signa-
ture was applied”. This behavior is similar to the behavior when the original
document is opened. Therefore, the attack is successful on Ul-layer 2.

PDF-XChange Viewer: This application could be attacked using the same manip-
ulated PDF file as Nitro Pro. When the manipulated file is opened the appli-
cation displays the manipulated content. While Ul-layer 1 does not contain
any information regarding the signature Ul-layer 2 states that the “Signature
is VALID” and “The document was not modified since the signature was ap-
plied”. This behavior is similar to the behavior when the original document is
opened. Therefore, the attack is successful on Ul-layer 2.

Perfect PDF 10 Premium: This application could be attacked using the same ma-
nipulated PDF file as Nitro Pro. When the manipulated file is opened the
application displays the manipulated content. A green checkmark is displayed
next to the visible signature on Ul-layer 1 and the information on Ul-layer 2
states that “The signature is valid” and “This document has not been modi-
fied since this signature was applied”. This behavior is similar to the behavior
when the original document is opened. Therefore, the attack is successful on
both Ul-layers.

5.3 Results 59

Perfect PDF Reader: This application could be attacked using the same manipu-
lated PDF file as Nitro Pro. When the manipulated file is opened the applica-
tion displays the manipulated content. A green badge containing a checkmark
is displayed next to the visible signature on Ul-layer 1 and the information
on Ul-layer 2 states that the signature is “Giiltig”. This behavior is similar to
the behavior when the original document is opened. Therefore, the attack is
successful on both Ul-layers.

Soda PDF: This application could be attacked using the same manipulated PDF
files as Nitro Pro and Soda PDF Desktop. It showed the exact same behav-
ior on both Ul-layers as eXpert PDF 12 Ultimate. Therefore, the attack is
successful on Ul-layer 2.

*Soda PDF Desktop: The following manipulations were applied to the original
document to successfully attack Soda PDF Desktop: First, a copy of the
/ByteRange entry was added behind the /Contents entry of the signature dic-
tionary. Afterwards, the signature dictionary was closed by adding » endobj.
A copy of all objects contained in the second signed byte range, an updated
document catalog, an updated pages object, an updated page object and an
updated stream were added behind the closed signature dictionary to manipu-
late the visible content of the document. Then, a new XRef section and a copy
of the original file’s last trailer were placed behind these objects. The copy
of the trailer does not need to contain more than the trailer dictionary. The
XRef section must contain correct XRef entries for the newly added objects.
Otherwise the application is not able to locate these objects and fails to vali-
date the present signature. To ensure that the new XRef section starts at the
byte offset specified by the startxref value of the last trailer (which is part
of the signed data and cannot be adjusted without invalidating the signature)
whitespaces are used as padding in front of the XRef section. Finally, the
third value of the /ByteRange entry’s array is replaced with the new start-
ing byte offset of the second signed byte range. When the manipulated file
is opened the application displays the manipulated content. While Ul-layer
1 does not contain any information regarding the signature Ul-layer 2 states
that the “Signature is Valid” and “After adding the signature, the document
has not been modified”. This behavior is similar to the behavior when the
original document is opened. Therefore, the attack is successful on Ul-layer 2.

In the following, all successful attacks achieved with the second Signature Wrapping
approach are presented in detail:

eXpert PDF 12 Ultimate: This application could be successfully attacked using the
test files 1, 36 and 41. These files have in common that no wrapping around the
signed data at the end of the file is used. The only difference between the files
is the /ByteRange entry. File 1 uses a /ByteRange entry specifying one byte
range with size 0 and a second byte range at the end of the file containing all

60

5 FEvaluation

signed data. File 36 makes use of a /ByteRange entry specifying a byte range
with size 5 at the beginning of the file and a second byte range at the end of
the file. In file 41 the /ByteRange entry specifies two byte ranges close to the
end of the file which means the first byte range does not start at byte offset 0.
When one of the three files is opened the application displays the manipulated
content. While Ul-layer 1 does not contain any information regarding the
signature Ul-layer 2 states that the “Signature is Valid” and “After adding the
signature, the document has not been modified”. This behavior is similar to
the behavior when the original document is opened. Therefore, the attack is
successful on Ul-layer 2. In addition to the successful attacks, an interesting
observation was made for some test files. The signature panel (part of Ul-layer
2) classifies the opened document as “Revision 1” for some test files (8, 9, 16,
17, 22, 23, 28, 29, 34, 35); for others the document is called “Revision 2” (2-7,
10-15, 18-21, 24-27, 30-33, 37-40). The signature panel contains an option
called “View Signed Version”. This button opens a new tab which should
present the originally signed version of the document to the user.'? For all
test files called “Revision 1”7 this button fulfills its task - the content of the
original document is displayed instead of the manipulated one. However, for all
test files called “Revision 2” the button opens a new tab but still displays the
manipulated content. The signature panel now states that the “Signature is
Valid” and “After adding the signature, the document has not been modified”;
the button “View Signed Version” is disabled and not clickable. This implies
to the user that the opened document has been altered after the signature was
applied but the content displayed in the new tab is the original file content.
These attacks are not classified as successful because the attacker model (see
Section 2.3) specifies that both Ul-layers must not state that the document
was modified after the application of the signature when the manipulated
document is opened.

Expert PDF Reader: This application could be successfully attacked using the same

test files as eXpert PDF 12 Ultimate. When one of the three files is opened
the application displays the manipulated content. While Ul-layer 1 does not
contain any information regarding the signature’s validity Ul-layer 2 states
that the “Signature is VALID” and “The revision of the document that was
covered by this signature has not been altered”. This behavior is similar to
the behavior when the original document is opened. Therefore, the attack is
successful on Ul-layer 2.

Foxit Reader: This application could be successfully attacked using 34 of the 41 test

files. All test files which did not lead to successful attacks (8, 9, 28, 29, 34,
35), except one (41), have in common that the added XRef section and trailer
were placed behind the wrapped signed data at the end of the file. When one

12The test files which led to successful attacks (1, 36 and 41) are also called “Revision 27, but the

“View Signed Version” button is disabled and not clickable.

5.3 Results 61

of these test files is opened the application does not show any indication that
a signature is present on any Ul-layer. Test file 41 contains a /ByteRange
entry which specifies two byte ranges close to the end of the file instead of one
starting at the beginning of the file. The application detects this and states
that there war an “Error during signature verification” and that “Unexpected
byte range values defining scope of signed data” were found on Ul-layer 2.
When one of the successful test files (1-7, 10-27, 30-33, 36-40) is opened the
application displays the manipulated content. It states that the “Signature
is VALID” and “The document has not been modified since the signature
was applied” on Ul-layer 2 while Ul-layer 1 does not contain any information
regarding the signature. This behavior is similar to the behavior when the
original document is opened. Therefore, the attack is successful on Ul-layer 2.

PDF Architect 6: This application could be successfully attacked using the same
test files as eXpert PDF 12 Ultimate. It showed the exact same behavior
for all test files on both Ul-layers as eXpert PDF 12 Ultimate (including the
described behavior in terms of “Revision 1” or “Revision 2”). Therefore, the
attack is successful on Ul-layer 2.

PDF Editor 6 Pro (Windows): This application could be successfully attacked us-
ing 35 of the 41 test files. All test files which did not lead to successful attacks
(8,9, 28, 29, 34, 35) have in common that the added XRef section and trailer
were placed behind the wrapped signed data at the end of the file. When one
of these test files is opened the application displays a banner stating that the
document is “Signed and all signatures are valid” on Ul-layer 1, but displays
the original content of the document instead of the manipulated one. Addition-
ally, Ul-layer 2 states that the “Signature is INVALID” and “The document
has been altered or corrupted since the Signature was applied”. When one of
the successful test files (1-7, 10-27, 30-33, 36-41) is opened the application dis-
plays the manipulated content. It shows a banner stating that the document
is “Signed and all signatures are valid” on Ul-layer 1 and the information on
Ul-layer 2 states that the “Signature is VALID” and “The document has not
been modified since the signature was applied”. This behavior is similar to
the behavior when the original document is opened. Therefore, the attack is
successful on both Ul-layers. However, the attack could only be successfully
evaluated for Windows. The macOS version of the application states that the
“Signature is INVALID” and “contains incorrect, unrecognized, corrupted or
supiscious data” even for the original document. Due to this behavior it was
not possible to determine whether a manipulation was detected. It was not
possible to solve this problem during the evaluation.

PDFelement 6 Pro (Windows): This application could be successfully attacked us-
ing the same test files as PDF Editor 6 Pro. It showed the exact same behavior
for all test files on both Ul-layers as PDF Editor 6 Pro. Therefore, the attack

62 5 Evaluation

is successful on both Ul-layers. Again, the attack is only successful for Win-
dows as the macOS version of the application behaves in the same way as the
macOS version of PDF Editor 6 Pro.

PDF Studio 12 Pro (Windows, Linux, macOS): This application could be success-
fully attacked using all 41 test files. Regardless of which test file is opened the
application displays the manipulated content. A green checkmark is displayed
next to the visible signature on Ul-layer 1 and the information on Ul-layer 2
states that the “Signature is VALID” and “The document has not been modi-
fied since the signature was applied”. This behavior is similar to the behavior

when the original document is opened. Therefore, the attack is successful on
both Ul-layers.

PDF Studio Viewer 2018 (Windows, Linux, macOS): This application could be
successfully attacked using the same test files as PDF Studio 12 Pro. It showed
the exact same behavior for all test files on both Ul-layers as PDF Studio 12
Pro. Therefore, the attack is successful on both Ul-layers.

PDF-XChange Editor: This application could be successfully attacked using the
test files 36 and 41. These files have in common that no wrapping around
the signed byte range at the end of the file is used and the size of the first
byte range specified by the /ByteRange entry is not 0. File 36 makes use of a
/ByteRange entry specifying a byte range with size 5 at the beginning of the file
and a second byte range at the end of the file. In file 41 the /ByteRange entry
specifies two byte ranges close to the end of the file. When one of the two files
is opened the application displays the manipulated content. While Ul-layer 1
does not contain any information regarding the signature’s validity Ul-layer 2
states that the “Signature is VALID” and “The document was not modified
since the signature was applied”. This behavior is similar to the behavior
when the original document is opened. Therefore, the attack is successful on
Ul-layer 2.

PDF-XChange Viewer: This application could be successfully attacked using the
same test files as eXpert PDF 12 Ultimate. When one of the three files is
opened the application displays the manipulated content. While Ul-layer 1
does not contain any information regarding the signature Ul-layer 2 states
that the “Signature is VALID” and “The document was not modified since
the signature was applied”. This behavior is similar to the behavior when the
original document is opened. Therefore, the attack is successful on Ul-layer 2.

Perfect PDF 10 Premium: This application could be successfully attacked using
all 41 test files. Regardless of which test file is opened the application displays
the manipulated content. A green checkmark is displayed next to the visible
signature on Ul-layer 1 and the information on Ul-layer 2 states that “The

5.3 Results 63

signature is valid” and “This document has not been modified since this signa-
ture was applied”. This behavior is similar to the behavior when the original
document is opened. Therefore, the attack is successful on both Ul-layers.

Perfect PDF Reader: This application could be successfully attacked using the test
files 36-41. In contrast to all others, these test files use /ByteRange entries
which specify a first byte range whose size is not 0. When one of these six test
files is opened the application displays the manipulated content. For test files
36 and 41 a green badge containing a checkmark is displayed next to the visible
signature on Ul-layer 1. Ul-layer 2 states that the signature is “Giiltig” and
contains the same badge. This behavior is similar to the behavior when the
original document is opened. Therefore, the attack is successful on both Ul-
layers. For test files 37-40 a tiny yellow warning symbol is added to the green
badge on both Ul-layers and the information on Ul-layer 2 states that the
signature is “Giiltig fiir unterschriebene Version”. Similar to the results of the
Incremental Update Abuse attack class the attacks based on these test files are
classified as successful despite this difference in behavior. This classification
is justified on the missing option to view the signed version of the document
and the minor difference between the displayed badges.

Soda PDF: This application could be successfully attacked using the same test files
as eXpert PDF 12 Ultimate. It showed the exact same behavior for all test
files on both Ul-layers as eXpert PDF 12 Ultimate (including the described
behavior in terms of “Revision 1” or “Revision 2”). Therefore, the attack is
successful on Ul-layer 2.

Soda PDF Desktop: This application could be successfully attacked using the same
test files as eXpert PDF 12 Ultimate. It showed the exact same behavior for all
test files on both Ul-layers as eXpert PDF 12 Ultimate (including the described
behavior in terms of “Revision 1” or “Revision 2”). Therefore, the attack is
successful on Ul-layer 2.

5.3.4 Re-evaluation after Application Updates

For several applications new versions were released during the time of the evalu-
ation. To ensure the identified attacks are still successful for the latest versions
of the applications when the thesis is submitted all applications were updated to
their latest versions on 10.11.2018 (Windows and Linux) resp. 12.11.2018 (macOS).
Afterwards, all attacks which have been successful for the previous versions were
evaluated again.

64 5 Evaluation

All attacks - except one attack of the first Signature Wrapping approach - were still
successful for the updated applications. The behavior of the updated applications
was similar to the behavior of their initially evaluated versions in all cases. The
only exception is the evaluation of the first Signature Wrapping approach for PDF
Architect 6. While the old version could be successfully attacked on Ul-layer 2
using the same manipulated file initially created for Nitro Pro and showed the exact
same behavior as eXpert PDF 12 Ultimate (see Section 5.3.3), the new version was
not vulnerable to this attack. Instead of displaying the manipulated content and
informing the user that the “Signature is Valid” on Ul-layer 2, the new version
showed an error message that it “Failed to open” the file. This behavior is similar to
the behavior of Soda PDF Desktop (both the old and updated version). However,
the Signature Wrapping attacks based on the manipulated file initially created for
Soda PDF Desktop and test files 1, 36 and 41 of the second Signature Wrapping
approach are still successful.

5.3.5 Summary

During the comprehensive evaluation of digital signatures embedded in PDF docu-
ments described in this chapter various vulnerabilities were identified. They allow
an attacker to bypass the signature protection in 30 of the 34 evaluated applications
completely and to change the displayed content of signed PDF documents arbitrarily.
Table 5.14 contains an overview of the results of this evaluation and tables containing
the complete results can be found in Appendix A.5.

Signature Wrapping 17 2 2

Incremental Update Abuse 12 ‘ 4

Signature Exclusion 2

0 5 10 15 20

mWindows #®Linux ®macOS

Figure 5.13: Number of applications vulnerable to the three attack classes for dif-
ferent operating systems.

During this thesis 21 applications for Windows, 5 applications for Linux and 8 appli-
cations for macOS were evaluated. In Figure 5.13 an overview of the vulnerability
to different attack classes and the vulnerable applications for different operating
systems is given. All three attack classes resulted in successful attacks for mul-
tiple applications. While the Signature Exclusion attack class could be used to

5.3 Results 65

successfully attack 6 applications, using the Incremental Update Abuse attack class
vulnerabilities in 19 applications were identified. The Signature Wrapping attack
class was the most successful one leading to attacks against 21 applications. While
vulnerabilities for at least one attack class were identified in all 21 Windows appli-
cations, 4 of the 5 Linux and 5 of the 8 macOS applications could be successfully
attacked using at least one attack vector. However, the 3 macOS applications for
which no vulnerabilities were identified could not be evaluated successfully. They
stated that the signature present in the unaltered original document is invalid. Due
to this behavior it was not possible to determine whether the applied manipulations
were successful. Therefore, the evaluation result for these applications is unknown.
It is likely that these applications can be attacked using on of the described attacks
if another original document is used for the manipulations because the Windows
and Linux versions of the corresponding applications are vulnerable to different at-
tacks. Despite its age the only application which could not be successfully attacked
with attack vectors based on any attack class is the last version of Adobe Reader
developed for Linux which was released in 2013. Surprisingly, the last versions of
Adobe Reader for Windows and macOS and the latest versions for its successor
Adobe Acrobat Reader DC for Windows and macOS are vulnerable to a very simple
Signature Exclusion attack - deleting the /ByteRange entry or replacing its value
with nu11.13

During the evaluation three manipulated documents were the most successful ones.
Using them it was possible to successfully attack 18 applications. These three docu-
ments are the Incremental Update Abuse attack based on incremental update variant
3 created for Perfect PDF Reader, the Signature Wrapping attack based on the first
approach created for Nitro Pro and test file 36 created for the second approach of
Signature Wrapping.

At the end of the evaluation all applications were updated to their latest version
and all successful attacks were executed again to determine if the updated appli-
cations are still vulnerable to the specific attack. All but one attacks could still
be executed successfully. This means the latest versions of 30 of the 34 evaluated
applications available at the time this thesis is submitted are vulnerable to critical
attacks completely bypassing the protection of digital signatures applied to PDF
documents.

The results of the evaluation and all identified vulnerabilities were responsibly dis-
closed to the applications’ vendors in cooperation with the computer emergency
response team (“CERT-Bund”)' of the german “Bundesamt fiir Sicherheit in der
Informationstechnik” (BSI) to enable them to implement updates which fix the iden-
tified vulnerabilities.

13 According to the PDF reference v1.7 a dictionary entry whose value is null should be treated
similar to a non present entry [2, p. 63].

“https://wuw.bsi.bund.de/DE/Themen/Cyber-Sicherheit/Aktivitaeten/CERT-Bund/
certbund_node.html

https://www.bsi.bund.de/DE/Themen/Cyber-Sicherheit/Aktivitaeten/CERT-Bund/certbund_node.html
https://www.bsi.bund.de/DE/Themen/Cyber-Sicherheit/Aktivitaeten/CERT-Bund/certbund_node.html

66 5 Evaluation

Application oS Attack Class Comments
Signature [ncremen- Signature
Exgclusion tal Update ‘Wrappin
Abuse Pping
Adobe Acrobat Reader DC Windows [] \/ \/ Error message displayed when the visi-
ble signature is clicked.
Adobe Acrobat Reader DC macOS [] \/ \/ Error message displayed when the visi-
ble signature is clicked.
Adobe Reader 9 Linux \/ / /
Adobe Reader XI Windows [) \/ \/ Error message displayed when the visi-
ble signature is clicked.
Adobe Reader XI macOS [] \/ \/ Error message displayed when the visi-
ble signature is clicked.
eXpert PDF 12 Ultimate Windows \/ \/ @
Expert PDF Reader Windows / \/ ®
Foxit Reader Windows \/ @ ®
LibreOffice Windows / (] \/ Incremental Update Abuse detected
when certificate is trusted.
LibreOffice Linux v (] \/ Not accomplished to trust certificate.
LibreOffice macOS \/ () / Not accomplished to trust certificate.
Master PDF Editor Windows v ® v
Master PDF Editor Linux \/ @) \/
Master PDF Editor macOS - - - Not possible to determine whether a
manipulation was detected or not.
Nitro Pro Windows \/ () [) Incremental Update Abuse detected
when certificate is trusted.
Nitro Reader Windows \/ () [] Incremental Update Abuse detected
when certificate is trusted.
Nuance Power PDF Standard || Windows \/ [] []
PDF Architect 6 Windows / \/ ®
PDF Editor 6 Pro Windows O] (] (]
PDF Editor 6 Pro macOS - - - Not possible to determine whether a
manipulation was detected or not.
PDFelement 6 Pro Windows i [] []
PDFelement 6 Pro macOS - - - Not possible to determine whether a
manipulation was detected or not.
PDF Studio 12 Pro Windows \/ [] []
PDF Studio 12 Pro Linux v Y Y
PDF Studio 12 Pro macOS \/ [] []
PDF Studio Viewer 2018 Windows \/))
PDF Studio Viewer 2018 Linux \/ [] []
PDF Studio Viewer 2018 macOS v Y Y
PDF-XChange Editor Windows \/ \/ @
PDF-XChange Viewer Windows \/ \/ ®
Perfect PDF 10 Premium Windows \/ [] []
Perfect PDF Reader Windows \/))
Soda PDF Windows v v @
Soda PDF Desktop Windows \/ \/ ®
6/34 19/34 21/34
Successful Attacks Total Signature Vulnerabilities: 30/34

v Attack not successful - Evaluation not possible
@® Attack successful on both Ul-layers @ Attack successful on Ul-layer 1
D Attack with limited success @ Attack successful on Ul-layer 2

Table 5.14: Evaluation results of 34 applications showing critical vulnerabilities in
30 of them.

6 Conclusion and Future Work

The final chapter summarizes and concludes the contents and results of this thesis.
Additionally, an outlook to possible further evaluations in the terms of the security
of PDF signatures is given.

6.1 Conclusion

The integrity, authenticity and non-repudiation protection digital signatures pro-
vide to digital documents is especially important in critical environments such as
the judicial system or tax matters. Additionally, PDF is a common choice for the
exchange of digital documents. Nevertheless, the security of digital signatures in
PDF documents has not been in the focus of research in the past. The goal of
the thesis was to fill this gap by providing the first comprehensive evaluation of
PDF processing applications regarding the security of digital signatures embedded
in documents.

During this thesis 34 applications for Windows, Linux and macOS were evalu-
ated using various manipulations and attacks based on the three different attack
classes Signature Exclusion, Incremental Update Abuse and Signature Wrapping.
The evaluation resulted in the identification of an alarming number of critical vul-
nerabilities. The identified vulnerabilities allow an attacker to completely bypass
the protection provided by a signature in a PDF document and change its con-
tents arbitrarly in 30 of the 34 evaluated applications. While the vendors of the
vulnerable applications have been informed during the evaluation no updated ver-
sions fixing the vulnerabilities have been released at the time this thesis is submit-
ted.

The results of the evaluation show that it was - and still is - necessary to survey the
security of PDF signatures to ensure they fulfill their purpose of protecting the docu-
ment’s contents. The mere amount of vulnerable applications - 30 of 34 - emphasizes
that the applications’ vendors need to pay more attention to security aspects during
the signature validation and probably when processing PDF documents in general.
The overall weak security of PDF signatures in common PDF processing applications
is especially alarming as governmental institutions as well as private companies rely
on the protection provided by digital signatures in PDF documents in various envi-
ronments including the judicial system, tax matters and all sorts of legally binding

68 6 Conclusion and Future Work

contracts. However, a first general approach to fix the identified vulnerabilities has
been developed by Mladenov et al. [18]. They propose a secure signature validation
algorithm which prevents the attacks presented in this thesis. Parts of this thesis
contributed to the publication.

Although this thesis contains a comprehensive evaluation for three very diverse at-
tack classes it can only be the starting point for research on the security of PDF
signatures. Further attack classes and ideas need to be devised and evaluated in
the future. Additionally, not only the security of signatures in PDF documents but
the overall security of PDF documents should be in the focus of future research due
to the high popularity of PDF documents and the criticality of the mentioned en-
vironments PDF documents are used in. This includes the confidentiality provided
by encrypted PDF documents and additional features provided by PDF such as the
inclusion of external resources.

The following section gives a more detailed outlook of ideas for future research on
the security of PDF signatures.

6.2 Future Work

As mentioned before further research on the security of PDF signatures is necessary
to ensure that digital signatures in PDF documents properly protect the document’s
contents. The following ideas and approaches are based on the knowledge and expe-
riences gained during the processing of this thesis and may help to identify further
vulnerabilities regarding PDF signatures in the future.

Extension of the Signature Exclusion attack class: In addition to the specific ma-
nipulations surveyed in the evaluation described in Chapter 5, other manipu-
lations could lead to successful attacks and should be evaluated. All manipu-
lations and manipulation ideas which have been devised during this thesis are
listed in Appendix A.3.1 and can be helpful for future evaluations.

Extension of the Signature Wrapping attack class: The second Signature Wrap-
ping approach was evaluated using 41 test files. In addition to the ideas and
manipulations these files are based on, ideas for the creation of further test
files are listed in Appendix A.3.2.

Using another original document to evaluate macOS applications: As described
in Section 5.1 three macOS applications could not be successfully evaluated
because they stated that the signature of the unaltered original document
is invalid. Another original document with a signature which is successfully
verified by these applications needs to be found to be able to evaluate these
applications.

6.2 Future Work 69

Hybrid attacks: The evaluation of the three attack classes Signature Exlcusion, In-
cremental Update Abuse and Signature Wrapping showed very different re-
sults for different applications. While some attacks could be used to attack
more than half of the evaluated applications no attack was successful for all
vulnerable applications. In a real-world attack an attacker might not know
which application his victim uses to view PDF files. This means he cannot
be sure that the attack will be successful if he makes use of only one of the
manipulations evaluated in this thesis. To increase the chances of a successful
attack (as long as the victim uses any of the vulnerable applications) a ma-
nipulated file which contains manipulations from multiple attack classes could
be used. For example, a combination of the most successful test file of the
second Signature Wrapping approach and the Incremental Update Abuse at-
tack for Perfect PDF Reader could led to a successful attack against 25 of
the 34 applications. Another example would be the combination of the first
approach Signature Wrapping attack for Nitro Pro and the Signature Exclu-
sion attack which removes the /ByteRange entry. If these attacks could be
successfully combined into one manipulated document 22 applications includ-
ing Adobe Acrobat Reader DC and Adobe Reader could be attacked with one
file. A first attempt to create such a hybrid attack was created by combining
the Incremental Update Abuse attack for Perfect PDF Reader and Signature
Exclusion attack for Adobe Acrobat Reader DC. The details of this attempt
can be found in Appendix A.4.

Adapt attacks to different PDF versions: For the evaluation conducted during this
thesis all manipulations were applied to the same original document depicted
in Appendix A.1.! This document is compliant to PDF version 1.4 to prevent
the usage of object and XRef streams. The manipulations evaluated should
be applicable to an original document compliant to newer PDF versions, like
1.7, as well. However, an evaluation must be conducted to verify that this
is the case and that the identified attacks are also successful with an original
document using object and XRef streams.

Adapt attacks to different types of signatures: As mentioned before, the evalua-
tion in this thesis was based on one single document. The signature present
in this document is a visible approval signature (see Section 2.2.1). Future
evaluations could adapt the manipulations to original documents which con-
tain other types of signatures, for example a certification signature, invisible
signatures or multiple signatures. Especially the evaluation of an original doc-
ument containing a signature compliant to PAAES would provide important
results because of the relevance of PAJES in certain environments.

Attacks specific to the signature type: Certification signatures allow the author
to specify which changes to a document are permitted without invalidating

! As described in Section 5.1 another original document had to be used to evaluate Nuance Power
PDF Standard. However, this original document is compliant to PDF version 1.4, as well.

70

6 Conclusion and Future Work

the certification signature. It might be possible to bypass this protection
by transforming a certification signature into an approval signature. As the
permissions are specified using a regular PDF object it might be possible to
change them using an attack from the Incremental Update Abuse or Signature
Wrapping attack class. According to the PDF reference approval signatures
cannot be used to specify permissions. However, it might also be possible to
transform an approval signature into a certification signature to enable the
specification of permissions.

Attacks against object digests: The PDF reference defines two possible digests in

the context of signatures: ByteRange digests and object digests. During the
processing time of this thesis no PDF document which makes use of an object
digest could be found. Therefore, all manipulations and attacks in this thesis
were applied to signatures which use ByteRange digests. However, object
digests might allow other interesting attack vectors similar to XML Signature
Wrapping attacks [16] because they make use of references to the signed objects
which are similar to object ids used by XML Signatures.

Exchange embedded content after signing: This idea is based on the PDF fea-

tures which allow to embed external multimedia data (see “WebCapture” [2,
pp. 946-961] and “File Specification” [2, p. 178-191]) or Javascript in PDF
documents. Depending on the way the digest is calulated (including the ex-
ternal content or only the reference to it) it might be possible to modify the
document’s content after the signature was applied by exchanging the content
of the referenced external file. The victim would not be able to detect the
manipulation as the signature would be valid. Using embedded Javascript it
might be possible to change the visible content of a document depending on
different circumstances (e.g., the time and date when the document is opened
or details of the used application or device). This could be used to manipulate
a document prior to the application of a signature: A victim opens the ma-
nipulated document, reviews its contents and signs it when the content is as
expected. Afterwards, the signed document is opened by another party. The
Javascript displays other content than the one displayed prior to the applica-
tion of the signature, but as the signed data is not changed the signature is
still valid. Another idea makes use of the PDF feature to include Postscript
code in PDF. Embedded Postscript might be able to change the visible content
of the document depending on the interpreter used to process the code. This
might allow to change the content when the document is viewed in a specific
application or printed, for example.

Custom Signature Appearance: This attack class, which was initially planed to be

part of this thesis, is based on the idea to manipulate the information regarding
the signature visible to the victim. The idea is based on the assumption that
this information is (partly) customizable and that it might be possible for an
attacker to pretend the signature verification was successful. One possibility

6.2 Future Work 71

could be to place an overlay over the visible part of the signature. However,
the possibilities are limited depending on the viewer application’s behavior

and UL

Attacks bases on the signer’s certificate: All attacks evaluated in this thesis and

described above focus on the signature details or its validation. However, the
initial plan for this thesis contained an attack class called “Certificate Issues”.
This attack class should deal with the security in terms of the certificate and
certificate chain used to verify a signature. While initial effort in this area has
been part of this thesis (Appendix A.2 contains information on how to estab-
lish a trust relationship between the evaluated applications and the signer’s
certificate) a comprehensive evaluation was not conducted for this attack class.
There might be applications which accept self-signed certificates or accept a
certificate packed with a certificate chain ending in a self-signed root certifi-
cate as trusted certificates. Different details during the certificate generation
might lead to different behavior in some applications (e.g., setting the “CA”
or “keyUsage” extensions to different values). This would allow an attacker to
simply change a document arbitrarly and sign the manipulated version using
his own certificate. This certificate could contain the same information ex-
cept the keys used as the original signer’s certificate making it difficult for the
victim to detect the attack.

Special applications not available to the public: For this thesis all PDF process-

ing applications which were found and support digital signatures as well as
provide a free version were evaluated. However, there are applications which
do not provide a free version or are not available to the public at all. These
non-public applications are used in critical environments. For example, the
courts in “North Rhine-Westphalia” (NRW) are in the process of changing
from paper records to the “elektronische Akte” (eAkte).? The eAkte is a col-
lection of digital documents for a lawsuit. As PDF is a common format for
digital documents it is used in the eAkte, as well.> The documents contained
in an eAkte are important and - depending on the specific document - secured
by digital signatures. The application used to manage the eAkte which is called
“ergonomisch elektronischer Arbeitsplatz” (e?A) is specifically developed for
this purpose and not available to the public.! However, the correct validation
of the signatures present in documents contained in an eAkte is crucial as the
judicial system relies on the integrity and authenticity of these documents for
the flawless processing of lawsuits. Therefore, these applications must be eval-
uated to ensure they are not vulnerable to the attacks presented in this thesis
or other attacks.

*https://justiz.de/elektronischer_rechtsverkehr/nordrhein-westfalen/index.php
3Elektronischer-Rechtsverkehr-Verordnung vom 24. November 2017, § 5 Absatz 1 Nummer 1.

https://justiz.de/elektronischer_rechtsverkehr/nordrhein-westfalen/index.php

A Appendix

A.1 Example PDF Document Containing a Visible Signature

This document contains a single page with a visible signature placed on it. It
is used as the original document for all manipulations and attacks evaluated in
Chapter 5 except for Nuance Power PDF Standard. This application stated that
the signature in the unaltered original document is invalid. Therefore, another signed
document whose signature was successfully verified by the application was used for
its evaluation.

Note: The second line and the contents of the streams contained in this document
had to be removed because BTEX is not able to display the binary data correctly. Ad-
ditionally, the signature value (value of the /Contents entry in object 10 0) had to be
shortened because BTEX does not support lines long enough.

%PDF-1.4
Do
1 0 obj

<<

/Type /Catalog

/Version /1.4

/Pages 2 0 R

>>

endobj

2 0 obj

<<

/Type /Pages

/Kids [3 0 R]

/Count 1

>>

endobj

3 0 obj

<<

/Type /Page

/MediaBox [0.0 0.0 612.0 792.0]
/Parent 2 O R

/Contents 4 0 R

/Resources 5 0 R

>>

endobj

4 0 obj

<<

/Length 51

/Filter /FlateDecode

>>

74 A Appendix

stream

endstream

endobj

5 0 obj

<<

/Font 6 0 R

>>

endobj

6 0 obj

<<

/F1 7 0R

>>

endobj

7 0 obj

<<

/Type /Font

/Subtype /Typel

/BaseFont /Helvetica-Bold
/Encoding /WinAnsiEncoding
>>

endobj

xref

08

0000000000 65535
0000000015 00000
0000000078 00000
0000000135 00000
0000000247 00000
0000000371 00000
0000000404 00000
0000000435 00000
trailer

<<

/Root 1 O R

/ID [<1FDC264C24377F037DC7C2587F9CIAA8> <1FDC264C24377F037DC7C2587F9CIAAS8>]
/Size 8

>>

startxref

537

%LEQF

BB BBBBB M

1 0 obj
<<

/Type /Catalog

/Version /1.4

/Pages 2 0 R

/AcroForm <<

/Fields [8 O R]

/SigFlags 3

/DR <<

/X0bject <<

/FRM 9 0 R

>>

/ProcSet [/PDF /Text /ImageB /ImageC /ImageI]
>>

>>

>>

endobj

8 0 obj

<<

/FT /Sig

A.1 Example PDF Document Containing a Visible Signature

/Type /Annot

/Subtype /Widget

/F 132

/T (Signaturel)

/V 10 O R

/P 30R

/Rect [0.0 777.0 45.0 792.0]
/AP <<

/N 11 O R

>>

>>

endobj

9 0 obj

<<

/Length 52

/Type /XObject

/Subtype /Form

/Resources <<

/X0Object <<

/n2 12 O R

/n0 13 O R

>>

/ProcSet [/PDF /Text /ImageB /ImageC /ImageI]
>>

/BBox [100.0 50.0 0.0 0.0]
/FormType 1

>>

stream

9q100100cm /n0DoQqg100100cm /n2 Do Q

endstream

endobj

10 0 obj

<<

/Type /Sig

/Filter /Adobe.PPKLite
/SubFilter /adbe.pkcs7.detached
/Name (Vladislav Mladenov)
/Location (Bochum)

/Reason (Security)

/M (D:20180809092110+02°00°)

/Contents <308006092A864886F70D010702A0803080020101310F300D060960864801650304020105 . . .

/ByteRange [0 1633 20579 2437]
>>

endobj

3 0 obj

<<

/Type /Page

/MediaBox [0.0 0.0 612.0 792.0]
/Parent 2 0 R

/Contents 4 O R

/Resources 5 0 R

/Annots [8 0 R]

>>

endobj

11 0 obj

<<

/Length 27

/Type /XObject

/Subtype /Form

/Resources <<

/X0Object <<

75

000>

76 A Appendix

/FRM 9 O R

>>

/ProcSet [/PDF /Text /ImageB /ImageC /ImageI]
>>

/BBox [100.0 50.0 0.0 0.0]

/FormType 1

>>

stream

q100100 cm /FRM Do Q

endstream

endobj

12 0 obj

<<

/Length 31

/Type /XObject

/Subtype /Form

/BBox [100.0 50.0 0.0 0.0]
/Matrix [1.0 0.0 0.0 1.0 0.0 0.0]
/Resources <<

/X0bject <<

/imgl 14 0 R

>>

/ProcSet [/PDF /Text /ImageB /ImageC /Imagel]
>>

/FormType 1

>>

stream

q 100 0 0 50 0 O cm /imgl Do Q

endstream
endobj

13 0 obj

<<

/Length 0
/Type /XObject
/Subtype /Form
/BBox [100.0 50.0 0.0 0.0]
/Resources <<
>>

/FormType 1

>>

stream

endstream

endobj

14 0 obj

<<

/Length 1064

/Type /X0Object
/Subtype /Image
/Filter /FlateDecode
/BitsPerComponent 8
/Width 90

/Height 30
/ColorSpace /DeviceGray
>>

stream

endstream

endobj

xref

A.2 Steps Needed to Establish a Trust Relationship between the Signer’s

Certificate and the Applications v

02

0000000000 65535 f
0000000838 00000 n
31

0000020638 00000 n
87

0000001027 00000
0000001178 00000
0000001451 00000
0000020766 00000
0000021004 00000
0000021282 00000
0000021420 00000
trailer

<<

/Root 1 O R

/ID [<1FDC264C24377F037DC7C2587F9CIAA8> <FD7ABFD8D7817F76AF29426E3A75B15A>]
/Size 15

/Prev 537

>>

startxref

22656

HHEOF

BBBBBBB

A.2 Steps Needed to Establish a Trust Relationship
between the Signer’s Certificate and the Applications

In the following, the steps needed to establish a trust relationship between the
signer’s certificate and each application are described. While 11 applications use the
certificate store of the operating system, 7 maintain their own trust management
and 4 applications trust every certificate in general. During this thesis it was not
accomplished to establish the trust relationship for the Linux and macOS version of
one application and three further macOS applications.

Adobe Acrobat Reader DC: The application does not use the trusted certificate
authories of the operating system but includes an own trust management in
its UL. After opening a signed document it is possible to trust the signer’s
certificate by opening the “Signature Panel” and the “Certificate Details”.
Afterwards the tab “Trust” allows to establish the trust relationship using
the “Add to Trusted Certificates...” button.

Adobe Reader 9: The application does not use the trusted certificate authories of
the operating system but includes an own trust management in its Ul. The
steps to be executed are the same as for Adobe Acrobat Reader DC.

Adobe Reader XI: The application does not use the trusted certificate authories of
the operating system but includes an own trust management in its Ul. The
steps to be executed are the same as for Adobe Acrobat Reader DC.

78 A Appendix

eXpert PDF 12 Ultimate: The application makes use of the trusted certificate au-
thorities of the operating system. For the Windows operating system this
means the signer’s certificate must be imported to the “Trusted Root Certifi-
cation Authories” certificate store of the local machine. If the certificate has
one of the supported formats® it can be imported by simply double-clicking it
and following the Ul instructions for “Install Certificate ...”.

Expert PDF Reader: The application seems to trust every certificate in general and
no UI option could be found to inspect the validity of the signer’s certificate
or to modify the trust relationship.

Foxit Reader: The application makes use of the trusted certificate authorities of
the operating system. Therefore, the steps to be executed are the same as for
eXpert PDF 12 Ultimate.

LibreOffice: The application makes use of the trusted certificate authorities of the
operating system. Therefore, the steps to be executed are the same as for
eXpert PDF 12 Ultimate for the Windows version. For the Linux and ma-
cOS version of the application it was not accomplished to establish the trust
relationship during this thesis.

Master PDF Editor: The application makes use of the trusted certificate authorities
of the operating system. Therefore, the steps to be executed are the same as
for eXpert PDF 12 Ultimate for the Windows version. The steps to add the
certificate to the trusted certificate authorities for Linux depend on the specific
distribution. Additionally, it is possible to establish the trust relationship using
the application’s own trust management. After opening a signed document it
is possible to trust the signer’s certificate by opening the “Signature Panel” and
executing a double click on the signature. Afterwards the button “Info” opens
the details of the certificate; the button “Add to Trusted Identities” establishes
the trust relationship. The macOS version of the application states that the
signature present in the original document is invalid. It was not possible to
determine whether the trust relationship between the signer’s certificate and
the application was established successfully.

Nitro Pro: The application does not use the trusted certificate authories of the op-
erating system but includes an own trust management in its Ul. After opening
a signed document it is possible to trust the signer’s certificate by opening
the properties of the signature (e.g., by clicking on the visible signature or
opening the signature panel and right-clicking the first line of the information)
and clicking on “Add to Trusted Contacts”.

'Windows supports DER-/PEM-encoded certificates with file ending “cer” or “crt”, PKCS#12-
encoded certificates with file ending “.p12” or PFX files with file ending “pfx”.

A.2 Steps Needed to Establish a Trust Relationship between the Signer’s

Certificate and the Applications &

Nitro Reader: The application does not use the trusted certificate authories of the
operating system but includes an own trust management in its UIL. The steps
to be executed are the same as for Nitro Pro.

Nuance Power PDF Standard: The application does not use the trusted certificate
authories of the operating system but includes an own trust management in
its UIL. After opening a signed document it is possible to trust the signer’s
certificate by opening the properties of the signature (e.g., by clicking on the
visible signature or opening the signature panel and right-clicking the first line
of the information), clicking on “Verify Identity” and clicking on “Add as a
Trusted Root™.

PDF Architect 6: The application makes use of the trusted certificate authorities
of the operating system. Therefore, the steps to be executed are the same as
for eXpert PDF 12 Ultimate.

PDF Editor 6 Pro: The application makes use of the trusted certificate authorities
of the operating system. Therefore, the steps to be executed are the same
as for eXpert PDF 12 Ultimate for the Windows version. However, it is also
sufficient to import the certificate to the “Intermediate Certificate Authorities”
certificate store instead of the “Trusted Root Certificate Authories” certificate
store. The macOS version of the application states that the signature present
in the original document is invalid. It was not possible to determine whether
the trust relationship between the signer’s certificate and the application was
established successfully.

PDFelement 6 Pro: The application makes use of the trusted certificate authorities
of the operating system. Therefore, the steps to be executed are the same as
for eXpert PDF 12 Ultimate for the Windows version. However, it is also suf-
ficient to import the certificate to the “Intermediate Certificate Authorities”
certificate store instead of the “Trusted Root Certification Authories” certifi-
cate store. The macOS version of the application states that the signature
present in the original document is invalid. It was not possible to determine
whether the trust relationship between the signer’s certificate and the appli-
cation was established successfully.

PDF Studio 12 Pro: The application makes use of the trusted certificate authorities
of the operating system. Therefore, the steps to be executed are the same as
for eXpert PDF 12 Ultimate for the Windows version. For macOS executing
a double click on the certificate and confirming that it should be added to the
“Keychain” is sufficient to add the certificate to the trusted system certificates.
The steps to add the certificate to the trusted certificate authorities for Linux
depend on the specific distribution. Additionally, it is possible to establish
the trust relationship using the application’s own trust management. After
opening a signed document it is possible to trust the signer’s certificate by
opening the “Signature Panel” and the “Details” of the signature. Afterwards

80 A Appendix

the button “Details” opens the “Certificate Details” which allow to establish
the trust relationship using the “Trust Certificate” button.

PDF Studio Viewer 2018: The application makes use of the trusted certificate au-
thorities of the operating system. Therefore, the steps to be executed are the
same as for eXpert PDF 12 Ultimate for the Windows version. For macOS ex-
ecuting a double click on the certificate and confirming that it should be added
to the “Keychain” is sufficient to add the certificate to the trusted system cer-
tificates. The steps to add the certificate to the trusted certificate authorities
for Linux depend on the specific distribution. Additionally, it is possible to
establish the trust relationship using the application’s own trust management.
After opening a signed document it is possible to trust the signer’s certificate
by opening the “Signature Panel” and the “Details” of the signature. Af-
terwards the button “Details” opens the “Certificate Details” which allow to
establish the trust relationship using the “Trust Certificate” button.

PDF-XChange Editor: The application seems to trust every certificate in general
and no Ul option could be found to inspect the validity of the signer’s certificate
or to modify the trust relationship.

PDF-XChange Viewer: The application seems to trust every certificate in general
and no Ul option could be found to inspect the validity of the signer’s certificate
or to modify the trust relationship.

Perfect PDF 10 Premium: The application does not use the trusted certificate au-
thories of the operating system but includes an own trust management in its
UI. After opening a signed document it is possible to trust the signer’s certifi-
cate by clicking on the visible signature and clicking on “Add Signer to Trusted
Identities”.

Perfect PDF Reader: The application seems to trust every certificate in general and
no UI option could be found to inspect the validity of the signer’s certificate
or to modify the trust relationship.

Soda PDF: The application makes use of the trusted certificate authorities of the
operating system. Therefore, the steps to be executed are the same as for
eXpert PDF 12 Ultimate.

Soda PDF Desktop: The application makes use of the trusted certificate authorities
of the operating system. Therefore, the steps to be executed are the same as
for eXpert PDF 12 Ultimate.

A.3 Complete Lists of Manipulations and Manipulation Ideas Devised for

Different Attack Classes 81

A.3 Complete Lists of Manipulations and Manipulation
Ideas Devised for Different Attack Classes

A.3.1 Signature Exclusion

The following two lists contain all specific manipulations and further ideas which
have been devised in the context of the Signature Exclusion attack class during this
thesis. The Python scripts developed during this thesis (see Chapter 4) implement
73 of the described manipulations. These manipulation are written in italic. The
24 manipulations evaluated during this thesis (see Chapter 5) are written in bold,
additionally.

Strategy 1: Remove parts which are essential for the verification of the
signature itself.

e Manipulate the whole signature dictionary:
— Replace it with an empty dictionary.
— Replace it with a dictionary which only contains a /Type entry.
— Remove the signature dictionary.
e Manipulate the /Contents entry of the signature dictionary:
— Replace its value with an empty hexadecimal string.

— Replace its value with a hexadecimal string containing a null
byte.

— Replace its value with an invalid hexadecimal string, for example <XX>.
— Replace its value with the null object.
— Replace its value with a reference to a non-existing indirect object.
— Replace its value with a reference to the object with object number 0.
— Remove its value.
— Remove the entry.
e Manipulate the /ByteRange entry of the signature dictionary:
— Replace its value with an empty array.
— Replace its value with an array containing only zeros.

— Replace its value with an array containing low numbers, for example
[0 5 6 10].

82

A Appendix

Replace its value with an array containing two identical integer pairs, for
example [0 1500 0 1500].

Replace its value with an array containing a negative value at
position 2.

Replace its value with an array containing a negative value at position 1,
3 or 4.

Replace its value with an array containing four negative values.

Replace its value with an array containing overlapping byte
ranges.

Replace its value with an array containing a byte range outside
of the document.

Replace its value with an array containing only one integer.
Replace its value with an array containing two, three or five integers.
Replace its value with the null object.

Replace its value with a reference to a non-existing indirect object.
Replace its value with a reference to the object with object number 0.
Remove its value.

Remove the entry.

e Manipulate the /Contents and /ByteRange entries of the signature dictionary:

Replace both their values with invalid values mentioned above.
Replace both their values with the null object.

Replace both their values with non-existing name objects.
Remove both their values.

Remove both entries.

e Manipulate the /Filter entry of the signature dictionary:

Replace its value with another existing name object stating a valid filter.

Replace its value with another existing name object stating anything but
a filter or subfilter.

Replace its value with a non-existing name object.
Replace its value with an arbitrary string.

Replace its value with the null object.

A.3 Complete Lists of Manipulations and Manipulation Ideas Devised for

Different Attack Classes 83

Replace its value with a reference to a non-existing indirect object.

— Replace its value with a reference to the object with object number 0.

Removwe its value.
— Remove the entry.
e Manipulate the /SubFilter entry of the signature dictionary:

— Replace its value with another existing name object stating a valid subfil-
ter.

— Replace its value with another existing name object stating anything but
a filter or subfilter.

— Replace its value with a non-existing name object.
— Replace its value with an arbitrary string.
— Replace its value with the null object.
— Replace its value with a reference to a non-existing indirect object.
— Replace its value with a reference to the object with object number 0.
— Remove its value.
— Remove the entry.
e Manipulate the /Filter and /SubFilter entries of the signature dictionary:
— FExchange their values.

— Replace both their values with the null object.

Replace both their values with non-existing name objects.

Remowve both their values.
— Remowve both entries.
e Manipulate the /Reference entry? of the signature dictionary:

— Add the entry if it is not present and set its value to an array containing
a reference to a non-existing indirect object or replace its value with it.

— Add the entry if it is not present and set its value to an array containing
a reference to the object with object number 0 or replace its value with
it.

— Add the entry if it is not present and set its value to anything other than
an array containing object references or replace its value with it.

2This entry is not mandatory. It contains an array with references to “Signature Reference Dic-
tionaries” if present [2, pp. 725-728].

84

A Appendix

Add the entry if it is not present and set its value to the null object or
replace its value with it.

Remove its value if the entry is present.

Removwe the entry if it is present.

e Manipulate other entries of the signature dictionary.

e Manipulate the whole signature reference dictionary>:

Replace the signature reference dictionary with an empty dictionary.

Replace the signature reference dictionary with a dictionary which only
contains a /Type entry.

Remove the signature reference dictionary.

e Manipulate the /DigestMethod entry of the signature reference dictionary:

Replace its value with an existing name object stating another algorithm.

Replace its value with an existing name object stating anything but an
algorithm.

Replace its value with a non-existing name object.
Replace its value with the null object.
Remove its value.

Remove the entry.

e Manipulate the /TransformMethod entry of the signature reference dictionary:

Replace its value with an existing name object stating another transform
method.

Replace its value with an existing name object stating anything but a
transform method.

Replace its value with a non-existing name object.
Replace its value with the null object.
Removwe its value.

Remove the entry.

e Manipulate the /TransformParams entry of the signature reference dictionary:

Replace its value with a reference to a non-existing indirect object.

3Signature reference dictionaries are not mandatory. If they are present in a document they are
reference in the /Reference entry in the signature dictionary [2, pp. 725-728].

A.3 Complete Lists of Manipulations and Manipulation Ideas Devised for

Different Attack Classes 85

Replace its value with a reference to the object with object number 0.

Replace its value with the null object.
— Remove its value.
— Remove the entry.
e Manipulate the whole transform parameters dictionary?:
— Replace the transform parameters dictionary with an empty dictionary.

— Replace the transform parameters dictionary with a dictionary which only
contains a /Type entry.

— Remove the transform parameters dictionary.
e Manipulate the /V entry of the transform parameters dictionary:
— Replace its value with the null object.
— Remove its value.
— Remove the entry.
e Manipulate the /P entry of the transform parameters dictionary:
— Replace its value with the null object.
— Remove its value.
— Remove the entry.
e Test different combinations of the manipulations mentioned above.
Strategy 2: Remove references to the signature.

e Manipulate the /Perms entry® of the document catalog:

Replace its value with a reference to a non-existing indirect object.

Replace its value with a reference to the object with object number 0.
— Replace its value with the null object.
— Remowve its value.

— Remove the entry.

4A transform parameter dictionary is not mandatory. If it is present in a document it is the value
of the /TransformParams entry in the signature reference dictionary [2, p. 730].

5The /Perms entry is only present in the updated document catalog if the document contains a
certification signature [2, p. 726]. It references the permissions dictionary [2, p. 142].

86 A Appendix

e Manipulate the whole permissions dictionary®:
— Replace it with an empty dictionary.
— Replace it with a dictionary containing only the null object.
— Remove the permissions dictionary.
e Manipulate the /DocMDP entry of the permissions dictionary:
— Replace its value with the null object.
— Remowe its value.
— Remove the entry.
e Manipulate the /AcroForm entry of the document catalog:

— Replace its value with an empty dictionary.

Replace it with a dictionary containing only the null object.
— Replace its value with the null object.

— Remove its value

— Remove the entry.

e Manipulate the /Fields entry inside of the dictionary which is the value of
the /AcroForm entry:

— Replace its value with an array containing a reference to a non-existing
indirect object.

— Replace its value with an array containing a reference to the object with
object number 0.

— Replace its value with an empty array.
— Replace its value with the null object.

— Remove the reference to the form field dictionary of the signature field
from the entry’s value.

— Removwe its value.
— Remove the entry.

e Manipulate the whole form field dictionary of the signature field referenced in
the /Fields array:

— Replace it with an empty dictionary.

5 A permissions dictionary is only used when the document contains a certification signature which
sets the modification permissions for other users [2, p. 726]. If it is present in a document it is
referenced by the /Perms entry of the document catalog [2, p. 142].

A.3 Complete Lists of Manipulations and Manipulation Ideas Devised for
Different Attack Classes

87

— Replace it with a dictionary containing the null object.

e Manipulate the /V entry” of the form field dictionary of the signature field:

— Replace its value with a reference to a non-existing indirect object.

— Remowve its value.

— Remove the entry.

Replace its value with a reference to the object with object number 0.

Replace its value with the null object.

e Manipulate the /P entry® of the form field dictionary of the signature field:

Replace its value with a reference to a non-existing indirect object.

Replace its value with a reference to the object with object number 0.

— Replace its value with the null object.

— Remowve its value.

— Remove the entry.

e Test different combinations of the manipulations mentioned above.

A.3.2 Signature Wrapping

This section contains the details of the 41 manipulations devised and evaluated as
the second approach of the Signature Wrapping attack class. Additionally, a list of

further ideas for manipulations is given.

Details of the 41 different manipulations evaluated as part of the second
approach of the Signature Wrapping attack class:

No.

Wrapping

Description

1

None

Connected two signed byte ranges at the
end of the file, replaced visible content
and adjusted /ByteRange: The first byte
range starts at byte 0 and has size 0.
The second byte range contains the whole
signed data.

"The /V entry references the value of the form field [2, p. 676]. In the case of a signature form
field it references the signature dictionary [2, p. 695].

8The /P entry references the page object the annotation of the form field is associated with
[2, p. 606].

88

A Appendix

Dictionary

Dictionary

Based on 1. Wrapped signed data in di-
rect dictionary object.

Based on 2. Added %%EOF behind wrap-
ping object.

Indirect dictionary object
Indirect dictionary object
Indirect dictionary object
Indirect dictionary object

Indirect dictionary object

Indirect dictionary object

Based on 1. Wrapped signed data in in-
direct dictionary object.

Based on 4. Added %%EOF behind wrap-
ping object.

Based on 4. Added XRef entry for wrap-
ping object and adjusted /ByteRange.
Based on 6. Added %%EOF behind wrap-
ping object.

Based on 6. Moved wrapping object
in front of last XRef section and trailer
and adjusted startxref value of last
trailer, XRef entry of wrapping object
and /ByteRange.

Based on 6. Moved wrapping object in
front of last XRef section and trailer,
deleted zeros in /Contents to make sure
startxref is correct and adjusted all
XRef entries and /ByteRange.

10

11

Stream

Stream

Based on 1. Wrapped signed data in di-
rect stream object.

Based on 10. Added %%EQF behind wrap-
ping object.

12

13

14

15

16

Indirect stream object
Indirect stream object
Indirect stream object
Indirect stream object

Indirect stream object

Based on 1. Wrapped signed data in in-
direct stream object.

Based on 12. Added %%EQF behind wrap-
ping object.

Based on 12. Added XRef entry for wrap-
ping object and adjusted /ByteRange.
Based on 14. Added %%EOF behind wrap-
ping object.

Based on 14. Moved wrapping object
in front of last XRef section and trailer
and adjusted startxref value of last
trailer, XRef entry of wrapping object
and /ByteRange.

A.3 Complete Lists of Manipulations and Manipulation Ideas Devised for

Different Attack Classes

17

Indirect stream object

89

Based on 14. Moved wrapping object
in front of last XRef section and trailer,
deleted zeros in /Contents to make sure
startxref is correct and adjusted all
XRef entries and /ByteRange.

18

19

20

21

22

23

Deflated indirect stream object

Deflated indirect stream object
Deflated indirect stream object
Deflated indirect stream object

Deflated indirect stream object

Deflated indirect stream object

Based on 1. Wrapped signed data in in-
direct stream object and added /Filter
/FlateDecode to the stream dictionary.
Based on 18. Added %%EQF behind wrap-
ping object.

Based on 18. Added XRef entry for wrap-
ping object and adjusted /ByteRange.
Based on 20. Added %%EQF behind wrap-
ping object.

Based on 20. Moved wrapping object
in front of last XRef section and trailer
and adjusted startxref value of last
trailer, XRef entry of wrapping object
and /ByteRange.

Based on 20. Moved wrapping object
in front of last XRef section and trailer,
deleted zeros in /Contents to make sure
startxref is correct and adjusted all
XRef entries and /ByteRange.

24

25

26

27

28

XML (indirect stream object)

XML (indirect stream object)
XML (indirect stream object)
XML (indirect stream object)

XML (indirect stream object)

Based on 1. Wrapped signed data
in indirect stream object and added
/Type Metadata and /Subtype XML to
the stream dictionary.

Based on 24. Added %%EQF behind wrap-
ping object.

Based on 24. Added XRef entry for wrap-
ping object and adjusted /ByteRange.
Based on 26. Added %%EOF behind wrap-
ping object.

Based on 26. Moved wrapping object
in front of last XRef section and trailer
and adjusted startxref value of last
trailer, XRef entry of wrapping object
and /ByteRange.

90

29

XML (indirect stream object)

A Appendix

Based on 26. Moved wrapping object
in front of last XRef section and trailer,
deleted zeros in /Contents to make sure
startxref is correct and adjusted all
XRef entries and /ByteRange.

30

31

32

33

34

35

CDATA (indirect stream object)

CDATA (indirect stream object)
CDATA (indirect stream object)
CDATA (indirect stream object)

CDATA (indirect stream object)

CDATA (indirect stream object)

Based on 24. Wrapped signed data in
CDATA section inside of stream, addi-
tionally, and adjusted /ByteRange.
Based on 30. Added %%EOF behind wrap-
ping object.

Based on 30. Added XRef entry for wrap-
ping object and adjusted /ByteRange.
Based on 32. Added %%EOF behind wrap-
ping object.

Based on 32. Moved wrapping object
in front of last XRef section and trailer
and adjusted startxref value of last
trailer, XRef entry of wrapping object
and /ByteRange.

Based on 32. Moved wrapping object
in front of last XRef section and trailer,
deleted zeros in /Contents to make sure
startxref is correct and adjusted all
XRef entries and /ByteRange.

36

None

Based on 1. Adjusted /ByteRange: The
first byte range is the first 5 bytes of the
file and the second byte range starts 5
bytes later and is 5 bytes shorter.

37

38

39

Indirect stream object

Indirect stream object

Indirect stream object

Based on 12. Adjusted /ByteRange: The
first byte range is the first 5 bytes of the
file and the second byte range starts 5
bytes later and is 5 bytes shorter.

Based on 13. Adjusted /ByteRange: The
first byte range is the first 5 bytes of the
file and the second byte range starts 5
bytes later and is 5 bytes shorter.

Based on 14. Adjusted /ByteRange: The
first byte range is the first 5 bytes of the
file and the second byte range starts 5
bytes later and is 5 bytes shorter.

A.3

Complete Lists of Manipulations and Manipulation Ideas Devised for

Different Attack Classes o
40 | Indirect stream object Based on 15. Adjusted /ByteRange: The
first byte range is the first 5 bytes of the
file and the second byte range starts 5
bytes later and is 5 bytes shorter.
41 | None Based on 1. Adjusted /ByteRange: The

first byte range starts at the beginning
of the signed data and ends behind the
/Contents entry. The second byte range
starts right after the first one and ends at
the end of the signed data.

Further manipulation ideas:

As arrays can contain any kinds of objects and can have a mixed structure
it is possible to use a direct or indirect array object as the wrapping for the
signed data. This allows to create 8 further test files using the same structures
as test files 2-9.

The /ByteRange entry specifying the signed data can be set to [0 0 X -Y] or
[0 5 X -(Y-5)] with X being the ending byte offset of the signed data and
Y being its length. Due to the negative length the signed data is referenced
correctly and this might be usable for attacks against applications which do
not check if the /ByteRange entry contains a negative value.

Some applications might display an error or recognize the manipulation be-
cause the wrapped signed data is present in the document but never used. An
initial approach to prevent this was to add an XRef entry for the wrapping
object to an XRef section. This idea could be extended by actually “using” the
wrapping object somewhere in the document. For example, if the wrapping
is a metadata stream it could be referenced in an updated document catalog.
However, this might result in other errors because the signed data is not a
valid metadata stream.

In order to “hide” the signed data from the application’s content processing
logic it might be possible to use a transformation which compresses the signed
data. The transformation information needed to decompress the signed data
prior to the signature validation could be added to the signature dictionary.

The following idea is based on the observations made for eXpert PDF 12
Ultimate, PDF Architect 6, Soda PDF and Soda PDF Desktop regarding
the different “Revisions” (see Section 5.3.3): If it is not possible to apply
manipulations undetected it might be possible to “confuse” applications to
display the original content when the document is opened and display the
manipulated content when the “View Signed Version” option is selected. This
would allow attacks when another attacker model is defined as the one used

92 A Appendix

in this thesis. The used attacker model classifies attacks as not successful if
the Ul-layer which contains the first information regarding the signature states
that the document has been modified after the signature was applied.

A.4 First Attempt to Create a Hybrid Attack Based on
Manipulations from Two Attack Classes

The two applications Adobe Acrobat Reader DC and its predecessor Adobe Reader
XTI are only vulnerable to two attacks from the Signature Exclusion attack class.
These attacks are not successful for any other application. As Adobe Acrobat Reader
DC is probably the most common PDF processing application surveyed in this thesis
it would be desirable to combine one of the successful attacks with an attack from
another attack class. This could led to a manipulated document usable for attacks
against multiple applications including the most common one.

As a first attempt the Signature Wrapping manipulation #12 (replacing the value
of the /ByteRange entry with null) was combined with the Incremental Update
Abuse attack created for Perfect PDF Reader. This attack is based on incremental
update variant 3 and could be used to successfully attack 18 applications during the
evaluation. This attack is a reasonable choice because incremental update variant 3
is almost similar to a regular incremental update. Regular incremental updates are
used to manipulate the visible content of a document after the application of the
Signature Wrapping manipulation during the attack against Adobe Acrobat Reader
DC.

In order to combine these two attacks the following steps need to be applied to the
original document:

1. Append the manipulated objects changing the visible content of the document
to the end of the file.

2. Append a copy of the signature dictionary of the original document to the end
of the file.

3. Replace the value of the /ByteRange entry in the signature dictionary copy
with null. This is the Signature Exclusion part of the hybrid attack.

4. Append a copy of the last XRef section to the end of the file. This is the
Incremental Update Abuse part of the hybrid attack.

5. Add XRef entries for all manipulated objects to the copied XRef section. How-
ever, the XRef entry referencing the signature dictionary must not be updated
and still reference the unaltered original signature dictionary instead of the
manipulated copy. Otherwise all applications relying on XRef information will
use the manipulated copy and will not be able to verify the signature correctly.

A.5 Tables Containing Complete Results of the Evaluation 93

6. Append a copy of the last trailer of the file to the end of the file.

7. Update the /Prev entry of the copied trailer to reference the last XRef section
of the original file and update startxref to reference the newly added XRef
section.

The resulting file was opened in all applications which are vulnerable to the In-
cremental Update Abuse attack created for Perfect PDF Reader, Adobe Acrobat
Reader DC and Adobe Reader XI. While the hybrid attack was successful for both
Adobe Acrobat Reader DC and Adobe Reader XI, it was not successful for all ap-
plications vulnerable to the original Perfect PDF Reader attack. Nevertheless, it
was still successful for PDF Studio 12 Pro, PDF Studio Viewer 2018, Perfect PDF
10 and Perfect PDF Reader and still limited successful for Nitro Pro and Nitro
Reader.

The hybrid attack is successful for two types of applications: First, all applica-
tions which use the last version of the signature dictionary independently of the
XRef information and are vulnerable to the Signature Exclusion manipulation. Sec-
ond, all applications which use the version of the signature dictionary referenced by
the XRef section and are vulnerable to the Incremental Update Abuse manipula-
tion.

Although it was not possible to increase the number of total applications vulner-
able to a single manipulated file this hybrid attack was still a successful first at-
tempt. It proves that it is possible to combine two attack classes for a success-
ful attack against applications which cannot be attacked using the same attack
class.

A.5 Tables Containing Complete Results of the Evaluation

The following three tables contain the results of the evaluation described in Chap-
ter 5. Each table is focused on one of the three attack classes explained in Chapter 3
and uses the following symbols:

Attack not successful

Attack successful on both Ul-layers
Attack successful on Ul-layer 1
Attack successful on Ul-layer 2
Attack with limited success
Evaluation not possible

' @ OO N

Note: The results marked with an asterisk were not produced by the author of this
thesis but his advisors. Their results are presented in this thesis for the sake of a
complete and comprehensive evaluation.

94

Signature Exclusion

A Appendix
D T T T T T T D I I I N
N D T e N T S LN
RIS O D e N S S N N N
ol R e e N N RN
I T T A e L AR RN (S
R A S S S Y S N N Y RN N
ENS S SSSN S SNNSSNSNSNNSNNS NSNS NSNS NSNS NN e
g'S\\\»\\\\\»\\\\\»\\\\\\\\\\\\\\\\ e
Eﬁ\\\\\\\\\\\\\\\\\\\\\\\»\\\\\\ e
I e S S N S S S T]
O @SS SN NN NN NN NN NN NN NSNS NSNS NS e e '\\Vq
g O S e S S N S S N NS '\\Og
Z; FO @SS S S SN SN SN NN NN NN NSNS NSNS 0 e '\\"‘Tg
2 &
gg’o:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ R R
g
;"éj»3\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ e
Lo S S S S S S SN SN SN SN N N N N N NN NSNS I NSNS NN NSNS NN e
L e D N N e N T N
I R N N L N
I e N N N
R e S S N N CEC AN N S N N N N N RN N
3‘"\\\\\\\\\\\@@\\\\\\\\\\\\\\\\ RN
%“\\\\\\\\\\\@@\\\\\\\\\\\\\\\\ NI G
QN\\\\\\\\\\\®68\\\\\\\\\\\\\\\ IR
ARSI SN NS S @ O NSNS S SS S S SSSSSN INSNSNS NN w
o
52
B
&) = &)
3 s 8 28 :
%C;EE? 5 2 OEEEEE o sog’j‘é 5 OE—“:
sptF 2 BeffLiEci . SfilEp Z2Ec G E
=R = 5] E oo X8 gy s z| RNEE Y HeooIE| 3
Eotsasnf.s fiizzossiiEa_ flt.5s8tTEsz223
s ffiigfigzissiariiiissiiaanfianiag s
< |EEXAEESC 2 2R RERERRrl3REE2RESE552228 @
EEEEIEIEEIREEIEIEEL L A,
RN EEEREEEEEEEEEEEEE EEEEEEER NN RS
O |z sEEEes|8 5535 3|E EEE8EE £ 8

A.5 Tables Containing Complete Results of the Evaluation

Incremental Update Abuse

5
.
Q
=
=+

(O}

Application

Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows

Windows
Windows
Windows

Windows
Windows
Windows
Windows
Windows
Windows

Adobe Acrobat Reader DC
Adobe Reader XI

eXpert PDF 12 Ultimate
Expert PDF Reader

Foxit Reader

LibreOffice

Master PDF Editor

Nitro Pro

Nitro Reader

Nuance Power PDF Standard
PDF Architect 6

PDF Editor 6 Pro

PDFelement 6 Pro
PDF Studio 12 Pro
PDF Studio Viewer 2018

PDF-XChange Editor
PDF-XChange Viewer
Perfect PDF 10 Premium
Perfect PDF Reader
Soda PDF

Soda PDF Desktop

Linux
Linux

Linux
Linux
Linux

Adobe Reader 9
LibreOffice

Master PDF Editor
PDF Studio 12 Pro
PDF Studio Viewer 2018

macOS
macOS

macOS
macOS
macOS
macOS
macOS
macOS

Adobe Acrobat Reader DC
Adobe Reader XI

LibreOffice

Master PDF Editor
PDF Editor 6 Pro
PDFelement 6 Pro

PDF Studio 12 Pro
PDF Studio Viewer 2018

N N L R N N RN L R N N

.*
.*

CNANNOO O CNANNAN0 SN0000 <00 o O w
'@ NN00RE NANN00 SN0000 000 O Sy w

SRV Y TERN NN N NN Y T Y NN EN-EN NN

Successful Attacks

8

14

18

11

Total: 18/34

95

A Appendix

96

¥€/91 :[e10L

1]

©
L]

¥¢/1¢ :[eoL

S3oe)YY [NSseoong

OT Or Or OTr Or OT | Oor OT | 2% Z 0T Oor ot ot ot

® 6 6 ¢ 6 6 6 0 & o 0 0o o o (4 o o (] 810G 10MaIA OIpMIS Add | SOBW
® 6 6 6 6 6 6 o & o 0o 0o o o ® e o ® 014 g1 opmis Add | SOdew
- - - - - - - - - - - - - - - - - - 01J 9 YPWLPIAd SOoew
- - - - - - - - - - - - - - - - - - 01d 9 10%pH Add SOoew
- - - - - - - - - - - - - - - - - - I0MPH Add PISEIN SOorew
rSrSS SN S S N PWONHAT | SOeH
A A A N N) A IX BT 290BY | S0
PP PP P PP PP P PP PP PP) DA sopuany oy adopy | godu
® 6 6 ¢ 6 06 6 6 & o 0o 0o o o (4 e O (4 810G 1oMaIA o1pMg Idd xnury
® 6 6 6 6 6 6 o & o 0o 0o o o ® e o ® 01d gT opmis Aad xnury
AR A A A VA VA A A A R A N TOUPH AAd TSN T
A A A N N N S) » POUHIT | xwr]
LS P PP PP PP PP PP P A PP b 6 0Py odopy |
rrSS S NSNS SN e +® doptseq 4Ad ¥POS | smopuIm
rSrSS S NSNS SN e © AAd EPOS | SMOPTLM
A VAV S I I, o P P3| S0P
® ¢ 6 6 6 ¢ 6 o & o & 0o o o ® e o ® el 0T Add 999 | SMOpuLp
rSrSS S NSNS SN e © oML, BEDX-AAd | SHOPUIM
AN VAV A R I, © O DT A | SA0PTIAL
® 6 6 6 6 6 6 o6 & o o o o o ® e o L 4 8T0G 1oMaIA OIpMIG J(d | SMOPUIM
® © 6 06 06 06 0606 0 0 0 0 0| © o o ° 01d g1 OIPMS AAd | Smopurm
e 6 6 6 6 6 &6 & » ,» O O O O ® o o ® 01d 9 JUGWRPRA(d | SMOPUIM
®© 06 060606 000)) 0 0 06 0 o o o ° 014 9 10UPE AAd | SMOPUIAY
A A VAV N N N N SV I @ 9 1TPAY dad | Sopri
A A AN N N N R S) ® | PPIIS dad Rod W | Saopuay
A A AR A o P ORI | SOPUEN
AR A A AV VA VAV A A A A R A e O1d OTHN | SHOPTLAL
rSrSS NS S S N TOUPH AAd TASEIN | SROPHIA
PP PPN PP PP PP AP ’ PO | 0PNy
® @ @ @ @ ©|l@ @l M0 M @ @ ©®@ @| @ @| @ ") 10PEOY X0 | SMOPUIAY
\, \, VAR AR \z \/ \/ VA \, \, VAR AR VA \z @ © Topedy JJd 1edXy | SMOPUIA
Y N I N Y S S N S N S S S S B S S B ® eyem| z1 Add 1edxe | smoputy
A A A N N N N R V) A IX 0PI 290PY | S8OPTEA
VRSS2 V.SV ... S AW, Y DA P IO HOPY | sn0pTiA
LT 9T ST ¥I €T ¢TI | IT Ol | 6 8 P 9 g 4 € [4 T ‘ON

100(qQ wreaa}g jo0arpuy weaa)g | 109fqQ Areuoryorq joearpuy | Areuordi | euopN | Surddeip uoryeorddy SO

yoeoaddy puoosg

yoeoaddy 9sarg

(T 9reg) Surddeapy aanjeuslig

A.5 Tables Containing Complete Results of the Evaluation 97
EQ\\@@\\\S\\@0000@@00@@\S\>00\\\' N X Ik
EHESSSANNNNNS 0000500555500 0 0 00T
BHSSSSONNNSSNSNS 0000, 50055555005 0 0 00T
52NN NL NN 000055005555 0005 00
ENSSSONNSNNSS 0000500, 55550055 0 000
BN 00 ONNSNNLNL0 000000000 0NN 0055 1 1 1 003
g%\\\&\\\\&\\\xOOS\OS\\\\SOQ\\S- N X I
N N N N T s
g%\\\S NSNS 0000, 505555550055 003
é%\\\S A@NSSNSSSS 0000, 505555550055 003
gésxx\x ENNNNNS 0000550 NN NN 00NN 002y
58%&\\\ ONNSSNSS 0000, 50,5 5NN 0005 IOOE?
%G%\\\\\\\\\\\\»SQOXSOXSSSXSQOS\»\- ' -00»;2
BERN S SN NSNS NS 005N 0L NSNS 00NN 1 e e
ESS\\\ ANSNSNSSS 0000, 50,5 55550055 1 003
ZEHSSHONNNNNN 0000, 505555550055 0 1 1008
gﬁ\\\\ NSNS 0000, 505555550055 1 100
IR NSNS 000055 05NN NN L 00NN 1 002
LANGSSHONNNNNS 00005 5055555500055 002
%ﬁ\\\\ ANSNSNSSS 0000, 505555550055 1 1002
ga\\xx O@NNSSNSNSS 0000, 5055555005 002
fg\\\S NSNS 0000, 505555550055 1003
FEANSHSHEONNNSNSS 00005505 5555500555 0 0 1008
Sﬁ\\\S NSNS 0000, 505555550055 003
e
% E ?% 2 g 0|3 2
Zle g B % = 2,2 fEEESE T 8 EREE. EoefElY
EFflt5 23Rz 28 irpdannddd szt Eoanss Eindanl g
SEEEEA AL 2EEEEEREEEE 2RSS 2EE2252EEEE 4
o |EEEEEEEE IR EEEEIEEEEEGEEEIES9999%%S
o EZEZEZ2EEEEEEEEEEEREEREEO50005|/E E ES88EE 4§

Signature Wrapping (Part 2)

List
2.2
2.4

2.9

2.10

3.2

3.3

5.4
9.5
5.6
5.7
5.9
5.10
5.11
5.12

5.13

of Figures

Initial structure of every PDF file.
Comparison of the initial file structure of a PDF file and its structure
after it has been appended using an incremental update.
Comparison of the signature panel of “Adobe Acrobat Reader DC”
when a certification signature and an approval signature is present in
the opened document. L.
Digest and signature algorithms and the maximum key lengths sup-
ported by different encodings and PDF versions.

Different file structures after the four manipulated incremental update
variants were applied to the original document.
File structures of a signed PDF file before and after different Signature
Wrapping attacks were applied. oL

Ul-layers of Adobe Acrobat Reader DC when a manipulated docu-
ment results in a successful attack.
Error message displayed when the visible appearance of a signature
in a manipulated document is clicked in Adobe Acrobat Reader DC.
Ul-layer 1 of PDF Editor 6 Pro when a manipulated document results
in a successful attack. oo
Ul-layer 2 of PDF Editor 6 Pro when a manipulated document which
results in a successful attack on Ul-layer 1 is opened.
Distribution of applications vulnerable to attacks based on the differ-
ent incremental update variants.
Comparison of Ul-layer 2 of Perfect PDF Reader when the unaltered
original document and the manipulated document are opened.

Comparison of the badges displayed on both Ul-layers of Perfect PDF

Reader when the original and the manipulated document are opened.

Distribution of applications vulnerable to attacks based on the test
files from the second Signature Wrapping approach.
Number of applications vulnerable to the three attack classes for dif-
ferent operating systems. L

15

17

26

29

42

42

43

43

45

592

52

95

List

3.1

3.4

5.1
5.2

5.3

5.14

of Tables

24 different manipulations evaluated as part of the Signature Exclu-
sion attack class. o
41 different manipulations evaluated as part of the second approach
of the Signature Wrapping attack class.

Overview of the structure of the evaluation.
List of all 34 PDF processing applications and their versions evaluated
for different operating systems.
List of applications which received updates during the evaluation and
their new versions for different operating systems.
Evaluation results of 34 applications showing critical vulnerabilities
in30of them.

List of Listings

2.1
2.3
2.5
2.6

2.7

2.8

4.1

5.8

Example PDF file (shortened).
Trailer of an example PDF file.

Shortened “document catalog” as an example for a dictionary object.

Example definition of an indirect string object with object number 31
and generation number 0. L.
XRef section of an example PDF file containing entries for the object
numbers 0 to 8.
Signature dictionary of an example PDF file (shortened).

Manipulation which replaces the /ByteRange entry’s value with an
array containing four zeros. oL oL

Incremental update which updates the string object (4 0) to display

Bibliography

1]

PDF Reference and Adobe Extensions to the PDF Specification, 2018.
URL https://www.adobe.com/devnet/pdf/pdf_reference.html. Accessed
on 15.08.2018.

Adobe Systems Incorporated. PDF Reference — Adobe Portable Document
Format, Version 1.7, November 2006.

Adobe Systems Incorporated. Digital Signature Appearances, Octo-
ber 2006. URL https://www.adobe.com/content/dam/acom/en/devnet/
acrobat/pdfs/PPKAppearances.pdf. Accessed on 15.08.2018.

Adobe Systems Incorporated. Digital Signatures in Acrobat, May 2007. URL
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/
digisig_in_acrobat.pdf. Accessed on 15.08.2018.

Adobe Systems Incorporated. Signature Validation Guide, 2009. URL
https://wuw.adobe.com/content/dam/acom/en/devnet/reader/pdfs/
acrobat_sig_validation_cheat_sheet9_1.pdf. Accessed on 15.08.2018.

Adobe Systems Incorporated. Digital Signatures in a PDF, 2012. URL
https://wuw.adobe.com/devnet-docs/acrobatetk/tools/DigSig/
Acrobat_DigitalSignatures_in_PDF.pdf. Accessed on 15.08.2018.

Tim Bienz, Richard Cohn, and Jim Meehan. Portable Document Format Ref-
erence Manual, Version 1.3, March 1999.

Tim Bray, Jean Paoli, Christopher Michael Sperberg-McQueen, Eve Maler,
and Francois Yergeau. Extensible Markup Language (XML) 1.0 (Fifth Edi-
tion). WS8C Standard, November 2008. URL https://www.w3.org/TR/2008/
REC-xm1-20081126.

Igino Corona, Davide Maiorca, Davide Ariu, and Giorgio Giacinto. LuxOr: De-
tection of malicious pdf-embedded javascript code through discriminant analysis
of api references. In Proceedings of the 2014 Workshop on Artificial Intelligent
and Security Workshop, pages 47-57. ACM, 2014.

Furopean Telecommunications Standards Institute. Electronic Signatures
and Infrastructures (ESI); PDF Advanced Electronic Signature Profiles; Part
1: PAdES Overview - a framework document for PAdES, April 2016.

https://www.adobe.com/devnet/pdf/pdf_reference.html
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/PPKAppearances.pdf
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/PPKAppearances.pdf
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/digisig_in_acrobat.pdf
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/digisig_in_acrobat.pdf
https://www.adobe.com/content/dam/acom/en/devnet/reader/pdfs/acrobat_sig_validation_cheat_sheet9_1.pdf
https://www.adobe.com/content/dam/acom/en/devnet/reader/pdfs/acrobat_sig_validation_cheat_sheet9_1.pdf
https://www.adobe.com/devnet-docs/acrobatetk/tools/DigSig/Acrobat_DigitalSignatures_in_PDF.pdf
https://www.adobe.com/devnet-docs/acrobatetk/tools/DigSig/Acrobat_DigitalSignatures_in_PDF.pdf
https://www.w3.org/TR/2008/REC-xml-20081126
https://www.w3.org/TR/2008/REC-xml-20081126

[14]

[16]

[17]

[21]

URL https://www.etsi.org/deliver/etsi_en/319100_319199/31914201/
01.01.01_60/en_31914201v010101p.pdf.

Valentin Hamon. Malicious URI resolving in PDF Documents. Black-
hat Abu Dhabi, 2012. URL https://media.blackhat.com/ad-12/Hamon/
bh-ad-12-malicious’%20URI-Hamon-Slides.pdf.

Pavel Laskov and Nedim Srndié. Static detection of malicious JavaScript-
bearing PDF documents. In Proceedings of the 27th annual computer security
applications conference, pages 373-382. ACM, 2011.

Davide Maiorca, Giorgio Giacinto, and Igino Corona. A pattern recognition
system for malicious pdf files detection. In International Workshop on Machine
Learning and Data Mining in Pattern Recognition, pages 510-524. Springer,
2012.

Davide Maiorca, Davide Ariu, Igino Corona, and Giorgio Giacinto. A structural
and content-based approach for a precise and robust detection of malicious pdf
files. In 2015 International Conference on Information Systems Security and
Privacy (ICISSP), pages 27-36. IEEE, 2015.

Tan Markwood, Dakun Shen, Yao Liu, and Zhuo Lu. PDF Mirage: Content
Masking Attack Against Information-Based Online Services. In 26th USENIX
Security Symposium (USENIX Security 17), (Vancouver, BC), pages 833-847,
2017.

Michael McIntosh and Paula Austel. XML signature element wrapping attacks
and countermeasures. In SWS ’05: Proceedings of the 2005 Workshop on Secure
Web Services, pages 20-27, New York, NY, USA, 2005. ACM Press.

Tim McLean. Blog post: Critical vulnerabilities in JSON Web Token li-
braries, March 2015. URL https://www.chosenplaintext.ca/2015/03/31/
jwt-algorithm-confusion.html. Accessed on 10.11.2018.

Vladislav Mladenov, Christian Mainka, Karsten Meyer zu Selhausen, Martin
Grothe, and Jorg Schwenk. How To Break PDF Signatures. Unpublished, 2018.

Dan-Sabin Popescu. Hiding Malicious Content in PDF Documents. CoRR,
2012.

Frédéric Raynal, Guillaume Delugré, and Damien Aumaitre. Ma-
licious Origami in PDF. Journal in Computer Virology, 6(4):289—
315, 2010. URL http://esec-lab.sogeti.com/static/publications/
08-pacsec-maliciouspdf.pdf.

Charles Smutz and Angelos Stavrou. Malicious PDF detection using metadata
and structural features. In Proceedings of the 28th annual computer security
applications conference, pages 239-248. ACM, 2012.

https://www.etsi.org/deliver/etsi_en/319100_319199/31914201/01.01.01_60/en_31914201v010101p.pdf
https://www.etsi.org/deliver/etsi_en/319100_319199/31914201/01.01.01_60/en_31914201v010101p.pdf
https://media.blackhat.com/ad-12/Hamon/bh-ad-12-malicious%20URI-Hamon-Slides.pdf
https://media.blackhat.com/ad-12/Hamon/bh-ad-12-malicious%20URI-Hamon-Slides.pdf
https://www.chosenplaintext.ca/2015/03/31/jwt-algorithm-confusion.html
https://www.chosenplaintext.ca/2015/03/31/jwt-algorithm-confusion.html
http://esec-lab.sogeti.com/static/publications/08-pacsec-maliciouspdf.pdf
http://esec-lab.sogeti.com/static/publications/08-pacsec-maliciouspdf.pdf

[22]

Juraj Somorovsky, Andreas Mayer, Jorg Schwenk, Marco Kampmann, and
Meiko Jensen. On Breaking SAML: Be Whoever You Want to Be. In 21st
USENIX Security Symposium, Bellevue, WA, 2012.

Nedim Srndié and Pavel Laskov. Hidost: a static machine-learning-based de-
tector of malicious files. EURASIP Journal on Information Security, (1):22,
2016.

Tom&as Stefan. Digital Signature Verification in PDF, 2018.
URL https://dspace.cvut.cz/bitstream/handle/10467/76810/
F8-BP-2018-Stefan-Tomas-thesis.pdf. Accessed on 10.11.2018.

Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik
Markov. The first collision for full SHA-1. In Annual International Cryptology
Conference, pages 570-596. Springer, 2017.

https://dspace.cvut.cz/bitstream/handle/10467/76810/F8-BP-2018-Stefan-Tomas-thesis.pdf
https://dspace.cvut.cz/bitstream/handle/10467/76810/F8-BP-2018-Stefan-Tomas-thesis.pdf

	Introduction
	Motivation
	Related Work
	Contribution
	Methodology
	Organization of This Thesis

	Foundations
	The Portable Document Format
	Overview
	PDF File Structure
	Incremental Updates
	Objects
	Special and Important Objects
	XRef Information

	Digital Signatures in PDF
	Overview
	Signing Process
	Verification Process

	Attacker Model

	Attack Classes
	Signature Exclusion
	Attack Idea
	Attack Details

	Incremental Update Abuse
	Attack Idea
	Attack Details

	Signature Wrapping
	Attack Idea
	Attack Details

	Tool Development
	Overview
	First Approach: Java Tool Based on PDFBox
	Second Approach: Tool Based on Python Scripts

	Evaluation
	Overview
	Testing Environment
	Results
	Signature Exclusion
	Incremental Update Abuse
	Signature Wrapping
	Re-evaluation after Application Updates
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix
	Example PDF Document Containing a Visible Signature
	Steps Needed to Establish a Trust Relationship between the Signer's Certificate and the Applications
	Complete Lists of Manipulations and Manipulation Ideas Devised for Different Attack Classes
	Signature Exclusion
	Signature Wrapping

	First Attempt to Create a Hybrid Attack Based on Manipulations from Two Attack Classes
	Tables Containing Complete Results of the Evaluation

	List of Figures
	List of Tables
	List of Listings
	Bibliography

		karsten.meyerzuselhausen@rub.de
	2018-11-25T18:48:00+0100
	Bochum, Germany
	Karsten Meyer zu Selhausen
	Submission of the thesis

