
Vulnerability Report

Attacks bypassing the signature validation in PDF

Christian Mainka, Vladislav Mladenov, Simon Rohlmann, Jörg
Schwenk

02. March, 2020
Chair for Network and Data Security

1 The scope of the vulnerability report

Research Results

Digitally signed PDFs are used in contracts, bills, and agreements to guarantee the authen-
ticity and integrity of their content. A typical user would assume that digitally signed PDF
files are final and cannot be further modified. However, various changes like adding an-
notations to a signed PDF or filling out form fields are allowed and do not invalidate PDF
signatures.

In this report, we show that this flexibility allows attackers to completely change a docu-
ment’s content while keeping the original signature validation status untouched. Our at-
tacks work in a novel attacker model, which allows attackers hiding content in a PDF.
After signing this PDF by a benign entity, the attackers reveal the hidden content by us-
ing permitted manipulations. Our results reveal that out of 27 tested PDF viewers, 15 of
them.

About us

The Chair of Network and Data Security (NDS) has been working since 2003 under the
direction of Prof. Dr.-Ing. Jörg Schwenk on the security analysis of cryptographic proto-
cols (especially in connection with browser-based protocols based on TLS) and the XML
format for signature generation and encryption. One focus of the department is to com-
prehensively explore the multitude of cryptographic techniques and standards used in these
fields.

1

2 Overview

Portable Document Format (PDF) documents are a major office format. According to
Adobe, more than 250 billion PDFs were opened in Adobe products in 2019 [1].

Since 1999 PDFs can be protected against manipulations with digital signatures enabling
use-cases such as signing contracts, agreements, payments, and bills. This way, the ne-
cessity to send printouts via mail all over the world is eliminated. Regulations like the
eSign Act in the USA [6] or the eIDAS regulation in Europe [8] facilitate the acceptance
of digitally signed documents by companies and governments. Asian and South American
countries also accept digitally signed documents as an equivalent to manually signed paper
documents [9]. Adobe Cloud, a leading online service for signing PDF documents, provided
8 billion electronic and digital signature transactions in 2019 [1]. The same year, DocuSign
processed in the same year 15 million documents each day [2].

The process of signing a PDF typically looks as follows: The PDF document is prepared
by the collaborators and agreed to be signed in the final step. Then, the document is sent
electronically to each project partner who signs it. In the end, one PDF contains all digital
signatures from each partner.

Security of PDF Signatures. In 2019, a comprehensive analysis of the security of digitally
signed PDFs revealed severe flaws in multiple applications and found almost all of them
vulnerable [5]. However, the authors limited the attackers’ capabilities who only possess
a digitally signed PDF and manipulate it afterwards. In this paper, we extend this attacker
model and assume that the attackers can have write access to the PDF file before it is signed.
This assumption is motivated by real-world scenarios and usage of PDFs. For instance, the
attackers may be employees or partners preparing a contract before all partners review and
sign it. This new attacker model rises the question: Can the visible content of a digitally
signed PDF be altered without invalidating a signature if attackers craft the PDF before it
is signed?

Shadow Attacks. In the analog world, a handwritten signature is typically added at the
end of the document. This has one major downside – it is possible to exchange all pages
before the signed page with arbitrary content. This exchange is impossible when using
digital signatures because this type of signature protects the entire content of a document.
So it is assumed that such an attack from the analog world cannot be transferred to digital
signatures. In this paper, we show that this assumption is incorrect by introducing a new
attack class: Shadow Attacks. The idea of Shadow Attacks is that the attackers create a
PDF document with two different contents: content expected by the authority reviewing

2

Figure 2.1: A signed PDF document remains valid after manipulations. A Shadowed PDF
document presents a trustworthy content to the Signers. After signing the docu-
ment, the attackers modify the document and enforce another view of the docu-
ment on victims’ side without invalidating the signature.

and signing the PDF and hidden content that will be displayed after the PDF is signed.
In Figure 2.1, an overview of the attack is shown. The Signers of the PDF receive the
document, review it, and sign it. The attackers use the signed document, modify it slightly,
and send it to the victims.

After opening the signed PDF the victims check whether the digital signature was success-
fully verified. However, the victims see different content than the Signers.

In this paper, we introduce three different variants of the Shadow Attacks allowing attackers
to hide, replace, and hide and replace content in digitally signed PDFs. The Shadow Attacks
do not rely on dynamic content replacement, for example, by using JavaScript, or content
loaded from external resources that can be modified after signing the PDF. We consider such
attacks trivial, and according to our observations, all viewers already prevent such attacks
by warning the user.

We propose a generic countermeasure that is standard compliant and does not affect the us-
ability of digitally signed PDFs in contrast to previous work [5].

3

3 Basics

This section provides a brief overview of the PDF file structure and explains the two most
important features for this paper: Incremental Saving (IS) and PDF Signatures.

3.1 PDF File Structure

The Portable Document Format (PDF) is a platform-independent document format. It con-
sists of three main parts, as depicted in Figure 3.1.

/Catalog 1 0

/AcroForm 2 0

/MetaData 3 0

/Pages 4 0

/Page 5 0

/Contents 6 0

/Font 7 0

/Image 8 0

Xref

1 0 obj Reference

2 0 obj Reference

3 0 obj Reference

4 0 obj Reference

5 0 obj Reference

6 0 obj Reference

7 0 obj Reference

8 0 obj Reference

Trailer

startxref Reference

Root Reference

P
a
rt

1
:
B
o
d
y

P
a
rt

2
:
X
ref

ta
b
le

P
a
rt

3
:
T
ra
iler

Figure 3.1: A PDF consists of three parts: body, Xref table, and Trailer. Objects in the body
and the root reference in the trailer link to other object (solid-lined arrow). The
Xref table part and the startxref entry contain the byte position within the file of
the corresponding entry (dashed-lined arrows).

4

The first part defines the PDF body. It contains different objects, which are identified by its
object number. The most important object is the root object, which is called the Catalog.
In Figure 3.1, the Catalog has the object identifier 1 0. The Catalog defines the whole PDF
structure by linking to other objects in the body. In the example given, the Catalog links to
form object AcroFrom, to some PDF MetaData, and to actual PDF Pages. The latter can
reference multiple Page objects, which in turn reference, for example, the actual Content,
Font, and Images.

The second part of the PDF is the Xref table. It contains references to the byte positions of
all objects used in the PDF body.

The third part is the Trailer. It consists of two further references: one to the byte posi-
tion at which the Xref table starts, and another link to the identifier of the root object (1
0).1

3.2 Incremental Saving

The content of a PDF may be updated for different reasons, for example, by adding review
comments or by filling out PDF forms. From a technical perspective, it is possible to add this
new content directly into the existing PDF body and add new references in the Xref table.
However, this is not the case according to the PDF specification. Updates are implemented
using Incremental Saving (IS).

An IS adds new objects into a new PDF body, which is directly appended after the previous
Trailer. To adequately address the new objects, a new Xref table and Trailer are appended
as well for each IS. Summarized, a PDF can have multiple bodies, Xref tables, and Trailers,
if IS is applied.

3.3 PDF Signature

For protecting the integrity and the authenticity of a PDF, digital signatures can be applied.
For this purpose, a Signature object is created and appended to the PDF by using IS. It
is also possible to sign a PDF multiple times (e.g., a contract), resulting in multiple ISs.
The Signature object contains all relevant information for validating the signature, such
as used algorithms and the signing certificate. It also defines which bytes of the PDF are
protected by the Signature. A typical signature starts at the first byte and ends at the last
byte of the trailer.2 For the attacks presented in this paper, more technical details on PDF
Signatures are not necessary, but interested readers find them in the specification [3, Sec-
tion 12.8]. Once a PDF that contains a PDF Signature is opened, the viewer application
automatically validates the signature and provides a warning if the content has been modi-
fied.

1The root element does not need to have the identifier 1 0.
2For technical reasons, there is a gap inside this range, which is unprotected. It contains a PKCS#7 blob of

the signature itself.

5

4 Attacker Model

The attacker model is based on the real-world use-case in which a document, for exam-
ple a contract, will be signed. We distillate this process and identify possible situations
in which the attackers can manipulate a Portable Document Format (PDF) before signing
it.

Generally spoken, the idea is to let the attackers chose a PDF, and use the Signers as a sign-
ing oracle. After the signing, the attackers manipulate the signed PDF again in order to en-
force a change in its content without invalidating the signature.

Attackers Signers Victims

(1) PDF1 = createPDF()

(2) PDF2 = sign(PDF1)

(3) (PDF2, PDF3 = manipulate(PDF2)) vrfy(PDF2)
= vrfy(PDF3)

and
show(PDF2)

6= show(PDF3)

Figure 4.1: Attacker Model: the attackers prepare the Shadowed Document (PDF1) which
the Signers sign (PDF2). The attackers afterward modify the content of the
signed PDF (PDF3) and sends it to the Victims.

Attacker Capabilities. As shown in Figure 4.1, the attacker capabilities can be divided into
three phases. The output of each phase is a PDF file.

1. The attackers create the shadowed PDF document PDF1 = createPDF(). They can
embed arbitrary content into this file. Arbitrary in this context means that the attack-
ers can embed invisible content into the PDF document. The content can be either
invisible due to an overlaying content (e.g., an image), because the corresponding
PDF object is not referenced in the Xref table, or due to any other masking attack
techniques.

2. The signers create a new document PDF2 by signing PDF1, i.e. PDF2 = sign(PDF1).
The signers can be a human, for example, receiving PDF1 via email, or an online sign-

6

ing service, such as DocuSign1 or Adobe Document Cloud 2 to which the attackers
upload the file.

3. In the end, the attackers receive PDF2. They can modify the file again, for instance,
the attackers create PDF3 = manipulate(PDF2). The attackers send PDF2 and PDF3
to the victims. The victims verify both files according to the winning conditions.

The main difference to previous work [5] is that the attackers are allowed to embed mali-
cious content before the PDF is signed instead of solely modifying it after the signature has
been applied.

Winning Conditions. The attackers are successful if the victims accept the following con-
ditions on receiving PDF2 and PDF3:

1. The signature verification of PDF3 returns the exact same result as the signature veri-
fication of PDF2: both are valid.

2. PDF2 and PDF3 show different content, for example, a different text on the same page.

3. Opening PDF3 does not show any kind of errors or warnings, for example, due to a
malformed file format.

On an abstract level, the attack is successful if the victims are unable to decide if either the
content of PDF2 or PDF3 was initially signed.

Out-of-Scope. The attackers do not embed any dynamic content loaded from external
sources. This attack idea was already published by Popescu [7]. Moreover, the PDF view-
ers either prevent the loading of external content or throw a warning in such cases. We
consider both events as an unsuccessful attack because the Signers can detect dangerous
content.

Summarized, we consider that the Signer of the document reacts on warnings thrown by
opening the document with refusing to sign the document.

1https://www.docusign.com/
2https://acrobat.adobe.com/us/en/

7

5 Shadow Attacks

In this section, we present a new attack class, which we call Shadow Attacks. The attack
class bypasses the PDF’s signature integrity protection, allowing the modification of the
content without the victim noticing.

The main idea of the attack is that the attackers prepare a PDF document containing in-
visible content. Afterward, the document is sent to a signing entity like a person or a
service which reviews the document, signs it, and sends it back to the attackers. Despite
the integrity protection provided by the digital signature, the attackers can make modifica-
tions to the document and change the visibility of the hidden content. Nevertheless, the
manipulation is not detected and the digital signature remains valid. Finally, the attack-
ers send the modified signed document to the victim. Although the document is altered,
the signature validation is successful, but the victims see different content than the signing
entity.

5.1 Shadow Documents in the Real World

Considering the applicability of shadow documents we focus on the following two ques-
tions: (1) How can the attackers force the signing of a shadow document? (2) Why are the
attackers capable of modifying a signed shadow document?

Signing a Shadow Document. In companies and authorities, relevant documents like con-
tracts or agreements are often prepared by the employees taking care of all details and
technicalities. Then, the document is signed by an authorized person after a careful review.
Another scenario is the signing process of a document within a consortium. Usually, one
participant creates the final version of the document, which is then signed by all consortium
members. Considering the given examples, an employee or consortium member acting ma-
liciously can hide invisible shadow content during the editing. Consequentially, this content
will be signed later.

Additionally, multiple cloud signing services like Adobe Cloud, DocuSign, or Digital Sig-
nature Service exist. Among other functionalities, such services receive a document and
sign it. For instance, USENIX uses the DocuSign service for the camera-ready version of
the accepted papers. Such services can also be used to sign shadow documents.

Manipulating a shadow document. One can assume that a signed PDF document cannot
be changed and that it is final. This is not the case due the desired features like multiple
signatures or annotations. For example, a PDF document can be signed multiple times.

8

This process is essential in many use-cases: it allows stakeholders within a consortium to
have one single document containing the signatures from all partners. From a technical
perspective, each new signature appends new information to the already signed document
(see section 3.2). Nevertheless, the document should still be successfully verified for each
signature. Additionally, the PDF specification defines interactive features like annotations
(e.g., sticky notes and text highlighting). Since annotations do not change the content, but
only put remarks on it, the PDF specification allows the insertion of annotations in a signed
file without invalidating the signature. In summary, further information can be appended to
a digitally signed PDF file without invalidating the signature, as long as these changes are
considered harmless.

5.2 Analysis of Document Modifications

Currently, the PDF applications analyze the changes made after signing and try to estimate
if these changes are legit. For instance, overwriting content on a page of the document is
not allowed and thus leads to invalid signature verification. Such attacks were evaluated in
2019 by Mladenov et al. [5].

In this paper, we first analyzed which changes are considered harmless by the PDF applica-
tions and abused these to exchange the entire content within a PDF document. The allowed
changes can be summarized as follows.

Appending new Xref table and Trailer. Appending a new Xref table and Trailer occurs on
each change on PDF documents. For instance, for each signing process among the signature
information new Xref table and Trailer are generated. Thus, appending these at the end of
the file is considered harmless.

Overwriting harmless objects. In their paper, Mladenov et al. [5] were able to append
new objects beyond the signed document overwriting existing objects and thus replacing
the content. The attack was called Incremental Saving Attack (ISA). Nevertheless, the
authors considered only object types: Catalog, Pages, Page, and Contents. This is rea-
sonable since these objects directly influence the content shown by opening the document.
As a reaction to their findings, the applications fixed the vulnerabilities by detecting the
definition of such objects after the signature was applied. Inspired by the work presented by
Markwood et al. [4], we considered the definition of further objects like fonts or metadata
which also influence the presented content.

Changing interactive forms. During our research, we observed an unexpected feature
applied on interactive forms, which overlays the content of a text field. By clicking on
the text field, its content is shown, and the overlay disappears. Ignoring the usefulness of
this feature, we observed that changes on the overlay are considered harmless and do not
invalidate the signature.

Summary. The PDF specification defines a compromise between usability and security
by softening the rules regarding the integrity protection of digitally signed documents. By

9

defining exceptions regarding allowed and forbidden changes, the responsibility of the de-
veloper teams regarding the detection and classification of manipulations raises and leads
to vulnerabilities. In the following, we show how the allowed changes which are consid-
ered harmless, can be used to exchange content within the document without invaliding the
signature.

root

/Catalog

/Pages

/Page1

/Contents /Font
...

/Img

Overlay

root

/Catalog

/Pages

/Page1

/Contents /Font
...

Signed Shadowed Document

Hide Overlay

Signed Shadowed Document

Replace /Font

root

/Catalog

/Pages

/Page1

/Contents /Font
...

/Contents

Signed Shadowed Document

Hide and Replace /Catalog

/Catalog

/Pages

/Page1

/Page1

/Contents /Font
...

/Img

Overlay /Page1

/Contents /Font
...

root

/Catalog /Catalog

Signers

Attackers

Signers

Attackers

Signers

Attackers

Hide Replace Hide-and-Replace

...

Figure 5.1: We show three variants of manipulating a Shadowed PDF documents without
being detected: Hide, Replace, and Hide-and-Replace.

5.3 Shadow Attack: Hide

The concept of Hide Shadow Attacks is to hide the content relevant for the victims behind
a visible layer. For example, the attackers can hide the text “You are fired!” behind a
full-page picture showing “Sign me to get the reward!”. Once the attackers receive the
signed document, they manipulate the document in such a way, that the picture is no longer
rendered by the viewer application.

Hide attacks have two advantages from the attackers’ perspective:

1. Many viewers show warnings, if new visible content is added using IS. However, they
do not warn in most cases if content is removed.

2. The objects are still accessible within the PDF. In the example above, the text “You
are fired!” can still be detected by a search function. This might be important if an
online signing service is used and it reviews the document by searching for specific
keywords.

We identified two variants of the Hide attacks.

Hiding Content via Page. This attack variant uses an IS to create a new Page object. It
contains all previously used objects except for the overlay, for example the image. This
attack variant is depicted on the left side in Figure 5.1.

10

Hiding Content via Xref. If the viewer application does not accept changes to PDF struc-
turing objects, such as Page, Pages, or Contents, the second attack variant can be applied.
This variant directly affects the overlay object. The simplest method for this is to create an
IS, which only updates the Xref table table by setting the overlay object to free. However,
making this change is interpreted as a dangerous in many viewers and an error or a warning
is thrown. For this reason, we use another approach: We use the same object ID within the
IS, but we define it as a different object type. For example, we change the overlay type im-
age to XML/Metadata. Additionally, we added an Xref table update pointing to the metadata
object, but keeping the object ID of the overlay.

When opening this manipulated document, the overlay is hidden, because Metadata cannot
be shown. Since adding Metadata to a signed PDF using IS is considered harmless, the
signature remains valid.

5.4 Shadow Attack: Replace

(a) A shadow PDF document digitally signed by
the victims containing a donation amount.

(b) Manipulated PDF document after signing
which contains attackers’ account data.

Figure 5.2: Form-Based Attack. The document on the left side is signed by the victims
donating to a non-profit organization. The attackers manipulate the document
which displays different account information than the signed one. The validity
status of digital signature remains untouched. Apart from the account informa-
tion, both documents are indistinguishable.

The main idea of this variant is to append new objects to the signed document which are
considered harmless but influence directly the presentation of the signed content, see Fig-
ure 5.1. For instance, the (re)-definition of fonts does not change the content directly. How-
ever, it influences the view of the displayed content making number or character swapping
possible.

Replace via Overlay

This attack targets an interactive feature in PDFs – interactive forms. Forms support dif-
ferent input masks (e.g., text fields, text areas, radio/selection buttons) where users dynam-

11

ically enter new content and store it in the PDF document. Forms can also have default
values which can be changed if needed. An example of a transfer slip as a PDF document
containing forms is depicted in Figure 5.2.

The main idea of the attack is to create a form, which shows one value before (PDF1) and
after signing (PDF2) as shown on the left side in Figure 5.2. After the attackers manipulate
the PDF and create PDF3, different values are shown in the form (right side in Figure 5.2).
The attack abuses a special property of PDF text fields: a text field can show two different
values: the real field value and an overlay value which disappears as soon as the text field is
selected. The real value of a form field is contained in an object key named /V. The content
of the overlay element is defined within a /BBox object. The /BBox object is comparable to
the hint labels known from HTML forms, for example the hint username to indicate that the
username should be entered into a specific login field. In contrast to HTML, in PDF there
is no visual difference between the hint and the actual value.

Description.

We explain the attack on an example depicted in Figure 5.2. The attackers create a transfer
slip (PDF1) containing an interactive form which the signers fill-out before signing the docu-
ment. The attackers initialize some of the form elements with default values.

The preparation steps of the shadow document (PDF1) look as follows:

1. In the example provided in Figure 5.2, the attackers set the values /V of the first three
form fields to Attacker and the attackers’ IBAN and BIC.

2. Second, the attackers set the overlay values (/BBox) to unicef and the correspondingIBAN
and BIC. As long as the signers do not focus on the prepared values they believe that
the correct values are already pre-filled.

The signers signs the PDF without changing the pre-filled forms. Once the attacker receives
PDF2, they update the text fields by replacing the overlay stored in /BBox with different val-
ues. The values stored in /V remain unchanged. This replacement is considered harmless
since the original text field value is not changed but only the overlay.

Once the victims open PDF3, the viewer proceeds as follows:

1. The viewer verifies if the values stored in /V within each text field have been changed
and differ from the signed values? If true, the signature validation fails. Since the
attackers do not change any values stored in /V the signature remains valid.

2. The viewer processes each text field object and shows the /BBox value if it maps to the
signed one. Otherwise the value stored in /V is presented. Since the attackers change
the /BBox value, the value /V is shown, which is Attacker and the corresponding
malicious transaction slips.

As a result, the signers and the victims have different views on the same document which
should be prevented by the digital signature.

12

Replace via Overwrite

As shown in Figure 5.1, the attackers prepare a shadow document which defines a font used
for the presentation of a specific content. After the document is being signed, the attackers
append a new font description and overwrite the previous description. Since, the definition
of new fonts is considered harmless, the applications verifying the signature, does not throw
any warning regarding the made changes.

5.5 Shadow Attack: Hide-and-Replace

Digital
Signature Referencing

Shadowed
Content

Shadowed
Document

xref
Reference to the 2nd 4 0 obj

trailer

Digital
Signature

Shadowed
Document

Signer’s view on the document Victim‘s view on the document

%PDF-2.0

1 0 obj (/Catalog) endobj
2 0 obj (/Pages) endobj
3 0 obj (/Page) endobj
4 0 obj
… (Sign the document to get a reward!)
endobj

xref
...
Reference to the 1st 4 0 obj

trailer

1 0 obj (/Catalog) endobj
6 0 obj (/Sig) endobj

xref

trailer

4 0 obj
… (You are fired. Get out immediately)
endobj

%PDF-2.0

1 0 obj (/Catalog) endobj
2 0 obj (/Pages) endobj
3 0 obj (/Page) endobj
4 0 obj
… (Sign the document to get a reward!)
endobj

xref
….
Reference to the 1st 4 0 obj

trailer

1 0 obj (/Catalog) endobj
6 0 obj (/Sig) endobj

xref

trailer

4 0 obj
… (You are fired. Get out immediately)
endobj

Figure 5.3: The attackers successfully manipulate a signed document and force different
views on the signers and the victims by using the Hide-and-Replace attack vari-
ant.

In this attack variant, the attackers create a shadow PDF document, which is sent to the
signers. The PDF document contains a hidden description of another document with dif-
ferent content. Since the signers cannot detect the hidden (malicious) content, they sign
the document. After signing, the attackers receive the document and append only a new
Xref table table and Trailer. Within the Xref table table, only one change takes place - the
reference to the document /Catalog (or any other hidden object) which now points to the
shadow document.

Description. In Figure 5.3, an example of the attack is depicted and will be explained
further.

• The attackers create a PDF file containing two objects with the same object ID (e.g.,
4 0 obj) but different content: Sign the document to get a reward! and You are fired.
Get out immediately.

• As shown on the left side in Figure 5.3, within the Xref table section the seemingly
harmless content is referenced.

13

• The signers only see this content and sign the PDF file.

• After receiving the signed PDF, the attackers append a new Xref table table and ex-
change the reference to the 4 0 object with the malicious content – You are fired. Get
out immediately. A new Trailer is also appended.

• Since the inclusion of an Xref table table pointing to an already defined object within
the signed area is considered harmless, no warning regarding the made changes occur,
and the signature verification is successful. Nevertheless, the victims see another
content than the signers.

Advantages and Disadvantages. This attack variant is the most powerful one since the
content of the entire document can be exchanged. The attacker can build a complete shadow
document influencing the presentation of each page and each object.

A possible disadvantage could occur in case that during the signing process, unused objects
are removed. Thus, the shadow elements could be deleted, making the second step of the
attack obsolete. A security scanner could also detect the unused objects within the PDF and
throw a warning. Currently none of these disadvantages occur.

14

6 Evaluation

In this section we present the results of our evaluation. The manipulated PDF documents
created during the research, were tested as black box procedures, under all viewing appli-
cations listed in Table 6.1.

Shadow Attack Category Summary
Application Version Hide Replace Hide-and-Replace

Adobe Acrobat Reader DC 2019.021.20061

W
in

do
w

s

Adobe Acrobat Pro 2017 2017.011.30156
Expert PDF 14 14.0.25.3456 64-bit G# G# G# G#
Foxit Reader 9.7.0.29455 #
Foxit PhantomPDF 9.7.0.29478 #
LibreOffice Draw 6.2.5.2 (x64) # G# G# G#
Master PDF Editor 5.4.38, 64 bit #
Nitro Pro 12.16.3.574 G# G# G# G#
Nitro Reader 5.5.9.2 G# G# G# G#
PDF Architect 7 7.0.26.3193 64-bit G# G# G# G#
PDF Editor 6 Pro 6.5.0.3929
PDFelement 7.4.0.4670
PDF-XChange Editor 8.0 (Build 331.0) G# G# G# G#
Perfect PDF Reader V14.0.9 (29.0) G# G# G# G#
Perfect PDF 8 Reader 8.0.3.5
Perfect PDF 10 Premium 10.0.0.1
Power PDF Standard 3.0 (Patch-19154.100)
Soda PDF Desktop 11.1.09.4184 64-bit # G# G# G#

Adobe Acrobat Reader DC 2019.021.20061

m
ac

O
S

Adobe Acrobat Pro 2017 2017.011.30156
Foxit Reader 3.4.0.1012
Foxit PhantomPDF 3.4.0.1012
Master PDF Editor 5.4.38, 64 bit # # # #
PDF Editor 6 Pro 6.8.1.3450 # # # #
PDFelement 7.5.7.2895 # # # #

Master PDF Editor 5.4.38, 64 bit

L
in

ux #
LibreOffice Draw 6.0.7.3 # G# G# G#∑︀

27 11 6G# 15 9G# 15 9G# 15 9G#

 Application vulnerable G# Vulnerability limited # Not vulnerable

Table 6.1: Evaluation results. 15 out of 27 applications are vulnerable to at least one attack.
In 9 cases, the vulnerability is limited, i.e., the same warning is raised in case
of an allowed modification (e.g., commenting) as well as in case of unallowed
modifications (attacks). Victims are unable to distinguish between both cases.

15

7 Countermeasures

Mladenov et al. [5] already proposed a countermeasure to prevent their identified attacks.
The downside of their approach is that the algorithm only accepts a PDF signature if the
entire PDF document is signed. Consequentially, their algorithm would also detect our
attacks.

However, it is not applicable in the real world. Speaking of contracts signed by multiple
persons would cause problems since a multiple-signed PDF is invalid according to the algo-
rithm by Mladenov et al. [5]. This is reasoned by the fact that the first PDF signature does
not cover the last byte of the PDF.

For this reason, we extend the validation algorithm as follows:

1. Take the input PDF PDF0 and split it into its revisions P =
{︀
PDFrev1 , . . . , PDFrevn

}︀
according to its Incremental Savings.

2. Find the first signed revision PDFrevi ∈ P with i ≥ 0.

a) If no signature is found, return false

3. For j = {i, . . . , n}

a) If PDFrev j has no signature, return false

b) Verify PDFrev j , i.e., true ?
= vrfysingle

(︁
PDFrev j

)︁
,

or return false

4. return true

Our algorithm is a composition. It uses an algorithm vrfysingle (), which can verify a PDF
that contains precisely one signature, for example, the algorithm proposed by Mladenov
et al. [5].

The major problem that we identified during our research is the combination of PDF Sig-
nature and IS. This combination is addressed by our composition algorithm. Due to our
evaluation results, most viewers allow some changes in an IS without invalidating the sig-
nature. This limited number of allowed changes can be abused in too many cases. For this
reason, we argue, that once a PDF is signed (Step 2), all further revision must be signed
(Step 3), without a single exception (Step 3.1). This behavior has one downside: it does
not allow any kind of change to the document without signing this change. For loosening
this restriction, Step 3.1 might raise a warning (“Document has been updated.”) instead of
returning false. The interested user could then manually view and inspect this particular
revision. Currently, lots of viewers already show a similar warning, but it is not precisely

16

defined in which cases they show it. In contrast, our results show that this behavior leads to
security issues.

17

Bibliography

[1] Adobe. Adobe fast facts, November 2018. URL https://www.adobe.com/
about-adobe/fast-facts.html.

[2] DocuSign. Docusign 2019 annual report. Technical report, 2019. URL
https://s22.q4cdn.com/408980645/files/doc_financials/2019/Annual/

DocuSign-FY2019-Annual-Report.pdf.

[3] Adobe Systems Incorporated. PDF Reference, version 1.7, sixth edition edition,
November 2006.

[4] Ian Markwood, Dakun Shen, Yao Liu, and Zhuo Lu. PDF Mirage: Content Masking At-
tack Against Information-Based Online Services. In 26th USENIX Security Symposium
(USENIX Security 17), (Vancouver, BC), pages 833–847, 2017.

[5] Vladislav Mladenov, Christian Mainka, Karsten Meyer zu Selhausen, Martin Grothe,
and Jörg Schwenk. 1 trillion dollar refund – how to spoof pdf signatures. In ACM
Conference on Computer and Communications Security, November 2019.

[6] United States Government Printing Office. Electronic signatures in global and
national commerce act, 2000. URL https://www.govinfo.gov/content/pkg/
PLAW-106publ229/pdf/PLAW-106publ229.pdf.

[7] Dan-Sabin Popescu. Hiding malicious content in PDF documents. CoRR,
abs/1201.0397, 2012. URL http://arxiv.org/abs/1201.0397.

[8] European Union. Regulation (eu) no 910/2014 of the european parliament and of the
council on electronic identification and trust services for electronic transactions in the
internal market and repealing directive 1999/93/ec, 2014. URL https://eur-lex.
europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0910.

[9] Wikipedia. Electronic signatures and law, 2019. URL https://en.wikipedia.org/
wiki/Electronic_signatures_and_law.

18

	The scope of the vulnerability report
	Overview
	Basics
	PDF File Structure
	Incremental Saving
	PDF Signature

	Attacker Model
	Shadow Attacks
	Shadow Documents in the Real World
	Analysis of Document Modifications
	Shadow Attack: Hide
	Shadow Attack: Replace
	Shadow Attack: Hide-and-Replace

	Evaluation
	Countermeasures
	Bibliography

